首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Pigmentation patterns are one of the most recognizable forms of phenotypic diversity and an important component of organismal fitness. While much progress has been made in understanding the genes controlling pigmentation in model systems, many questions remain about the genetic basis of pigment traits observed in nature. Lake Malawi cichlid fishes are known for their diversity of male pigmentation patterns, which have been shaped by sexual selection. To begin the process of identifying the genes underlying this diversity, we quantified the number of pigment cells on the body and fins of two species of the genus Metriaclima and their hybrids. We then used the Castle-Wright equation to estimate that differences in individual pigmentation traits between these species are controlled by one to four genes each. Different pigmentation traits are highly correlated in the F(2) , suggesting shared developmental pathways and genetic pleiotropy. Melanophore and xanthophore traits fall on opposite ends of the first principal component axis of the F(2) phenotypes, suggesting a tradeoff during the development of these two pigment cell types.  相似文献   
2.

Background

How and why animals lose eyesight during adaptation to the dark and food-limited cave environment has puzzled biologists since the time of Darwin. More recently, several different adaptive hypotheses have been proposed to explain eye degeneration based on studies in the teleost Astyanax mexicanus, which consists of blind cave-dwelling (cavefish) and sighted surface-dwelling (surface fish) forms. One of these hypotheses is that eye regression is the result of indirect selection for constructive characters that are negatively linked to eye development through the pleiotropic effects of Sonic Hedgehog (SHH) signaling. However, subsequent genetic analyses suggested that other mechanisms also contribute to eye regression in Astyanax cavefish. Here, we introduce a new approach to this problem by investigating the phenotypic and genetic relationships between a suite of non-visual constructive traits and eye regression.

Results

Using quantitative genetic analysis of crosses between surface fish, the Pachón cavefish population and their hybrid progeny, we show that the adaptive vibration attraction behavior (VAB) and its sensory receptors, superficial neuromasts (SN) specifically found within the cavefish eye orbit (EO), are genetically correlated with reduced eye size. The quantitative trait loci (QTL) for these three traits form two clusters of congruent or overlapping QTL on Astyanax linkage groups (LG) 2 and 17, but not at the shh locus on LG 13. Ablation of EO SN in cavefish demonstrated a major role for these sensory receptors in VAB expression. Furthermore, experimental induction of eye regression in surface fish via shh overexpression showed that the absence of eyes was insufficient to promote the appearance of VAB or EO SN.

Conclusions

We conclude that natural selection for the enhancement of VAB and EO SN indirectly promotes eye regression in the Pachón cavefish population through an antagonistic relationship involving genetic linkage or pleiotropy among the genetic factors underlying these traits. This study demonstrates a trade-off between the evolution of a non-visual sensory system and eye regression during the adaptive evolution of Astyanax to the cave environment.
  相似文献   
3.
The retina is the light-sensitive tissue of the eye that facilitates vision. Mutations within genes affecting eye development and retinal function cause a host of degenerative visual diseases, including retinitis pigmentosa and anophthalmia/microphthalmia. The characin fish Astyanax mexicanus includes both eyed (surface fish) and eyeless (cavefish) morphs that initially develop eyes with normal retina; however, early in development, the eyes of cavefish degenerate. Since both surface and cave morphs are members of the same species, they serve as excellent evolutionary mutant models with which to identify genes causing retinal degeneration. In this study, we crossed the eyed and eyeless forms of A. mexicanus and quantified the thickness of individual retinal layers among 115 F2 hybrid progeny. We used next generation sequencing (RAD-seq) and microsatellite mapping to construct a dense genetic map of the Astyanax genome, scan for quantitative trait loci (QTL) affecting retinal thickness, and identify candidate genes within these QTL regions. The map we constructed for Astyanax includes nearly 700 markers assembled into 25 linkage groups. Based on our scans with this map, we identified four QTL, one each associated with the thickness of the ganglion, inner nuclear, outer plexiform, and outer nuclear layers of the retina. For all but one QTL, cavefish alleles resulted in a clear reduction in the thickness of the affected layer. Comparative mapping of genetic markers within each QTL revealed that each QTL corresponds to an approximately 35 Mb region of the zebrafish genome. Within each region, we identified several candidate genes associated with the function of each affected retinal layer. Our study is the first to examine Astyanax retinal degeneration in the context of QTL mapping. The regions we identify serve as a starting point for future studies on the genetics of retinal degeneration and eye disease using the evolutionary mutant model Astyanax.  相似文献   
4.
SUMMARY Lake Malawi (LM) cichlids have undergone heterochronic shifts in the expression of their cone opsin genes, the genes responsible for color vision. These shifts have generated species with short-, middle-, and long-wavelength-sensitive cone photoreceptors and visual systems. However, it is unclear when during the evolution of African cichlids these shifts occurred, or whether they could account for similar short- and middle-wavelength-sensitive profiles among unrelated cichlids in Lake Tanganyika (LT). To address these questions, we surveyed opsin expression in developing fry of two African cichlids, Astatotilapia burtoni from LT and Melanochromis auratus from LM. We found that A. burtoni expresses a series of three different single-cone opsins over the course of development, while M. auratus exhibits variation in the expression of only two. Neither A. burtoni nor M. auratus exhibits much variation in the expression of its double-cone opsins. These patterns reveal that A. burtoni exhibits progressive development in the sensitivity of its single-cone photoreceptors, but direct development in the sensitivity of its double-cone photoreceptors. M. auratus exhibits neotenic development in the sensitivity of both photoreceptor sets. Given the intermediate phylogenetic placement of A. burtoni between cichlids from LT and LM, our results suggest that the ancestor of LM's cichlids exhibited a progressive developmental pattern of opsin expression. These results indicate that the heterochronic shifts which produced the short- and middle-wavelength-sensitive profiles of LM's cichlids occurred recently, and suggest that the presence of similar profiles among LT's cichlids are due to parallel heterochronic shifts.  相似文献   
5.
To investigate the influence of positive end-expiratory pressure (PEEP) on hemodynamic measurements we examined the transmission of airway pressure to the pleural space during varying conditions of lung and chest wall compliance. Eight ventilated anesthetized dogs were studied in the supine position with the chest closed. Increases in pleural pressure were similar for both small and large PEEP increments (5-20 cmH2O), whether measured in the esophagus (Pes) or in the juxtacardiac space by a wafer sensor (Pj). Increments in Pj exceeded the increments in Pes at all levels of PEEP and under each condition of altered lung and chest wall compliance. When chest wall compliance was reduced by thoracic and abdominal binding, the fraction of PEEP sensed in the pleural space increased as theoretically predicted. Acute edematous lung injury produced by oleic acid (OA) did not alter the deflation limb pressure-volume characteristics of the lung, provided that end-inspiratory volume was adequate. With the chest and abdomen restricted OA was associated with less than normal transmission of airway pressure to the pleural space, most likely because the end-inspiratory volume required to restore normal deflation characteristics was not attained. Together these results indicate that the influence of acute edematous lung injury on the transmission of airway pressure to the pleural space depends importantly on the peak volume achieved during inspiration.  相似文献   
6.
DNA glycosylases safeguard the genome by locating and excising chemically modified bases from DNA. AlkD is a recently discovered bacterial DNA glycosylase that removes positively charged methylpurines from DNA, and was predicted to adopt a protein fold distinct from from those of other DNA repair proteins. The crystal structure of Bacillus cereus AlkD presented here shows that the protein is composed exclusively of helical HEAT-like repeats, which form a solenoid perfectly shaped to accommodate a DNA duplex on the concave surface. Structural analysis of the variant HEAT repeats in AlkD provides a rationale for how this protein scaffolding motif has been modified to bind DNA. We report 7mG excision and DNA binding activities of AlkD mutants, along with a comparison of alkylpurine DNA glycosylase structures. Together, these data provide important insight into the requirements for alkylation repair within DNA and suggest that AlkD utilizes a novel strategy to manipulate DNA in its search for alkylpurine bases.  相似文献   
7.
Despite being widely regarded as generalist predators, amphibians exhibit a diversity of tooth shapes and dentition patterns, which may indicate the influence of dietary specialization on the evolution of tooth morphology. Very few studies have analysed the relationship between tooth morphology and diet (i.e., prey items) in amphibians, and those existing studies are highly speculative. We investigated the evolution of salamander teeth and the relationship between tooth morphology and diet in a phylogenetically independent fashion. We used a phylogeny of 23 species of salamander representing three families (Ambystomatidae, Plethodontidae, and Salamandridae) to, first, analyse the divergence of tooth morphology and its relationship to phylogeny and, second, to analyse the relationship between tooth morphology and diet diversity. We used electron scanning microscopy and a statistical comparative approach using Spatial Evolutionary and Ecological Analysis (SEEVA) and phylogenetic generalized least‐squares regression in R. Our results indicated significant divergence in tooth morphology at major phylogenetic splits. Moreover, there was a significant, phylogenetically independent relationship between tooth morphology and diet diversity. The relationship between diet and tooth morphology indicates not only a reflection of phylogenetic history, but also a degree of dietary specialization, indicating that evolution in tooth morphology has had an adaptive aspect in relation to salamander diet.  相似文献   
8.
A major goal of evolutionary biology is to unravel the molecular genetic mechanisms that underlie functional diversification and adaptation. We investigated how changes in gene regulation and coding sequence contribute to sensory diversification in two replicate radiations of cichlid fishes. In the clear waters of Lake Malawi, differential opsin expression generates diverse visual systems, with sensitivities extending from the ultraviolet to the red regions of the spectrum. These sensitivities fall into three distinct clusters and are correlated with foraging habits. In the turbid waters of Lake Victoria, visual sensitivity is constrained to longer wavelengths, and opsin expression is correlated with ambient light. In addition to regulatory changes, we found that the opsins coding for the shortest- and longest-wavelength visual pigments have elevated numbers of potentially functional substitutions. Thus, we present a model of sensory evolution in which both molecular genetic mechanisms work in concert. Changes in gene expression generate large shifts in visual pigment sensitivity across the collective opsin spectral range, but changes in coding sequence appear to fine-tune visual pigment sensitivity at the short- and long-wavelength ends of this range, where differential opsin expression can no longer extend visual pigment sensitivity.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号