首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   16篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   11篇
  2014年   12篇
  2013年   15篇
  2012年   11篇
  2011年   14篇
  2010年   15篇
  2009年   11篇
  2008年   18篇
  2007年   12篇
  2006年   10篇
  2005年   20篇
  2004年   10篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   9篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   5篇
  1977年   2篇
  1973年   1篇
  1972年   4篇
  1970年   1篇
排序方式: 共有260条查询结果,搜索用时 31 毫秒
1.
A method was developed to optimize simultaneous selection for a quantitative trait with a known QTL within a male and a female line to maximize crossbred performance from a two-way cross. Strategies to maximize cumulative discounted response in crossbred performance over ten generations were derived by optimizing weights in an index of a QTL and phenotype. Strategies were compared to selection on purebred phenotype. Extra responses were limited for QTL with additive and partial dominance effects, but substantial for QTL with over-dominance, for which optimal QTL selection resulted in differential selection in male and female lines to increase the frequency of heterozygotes and polygenic responses. For over-dominant QTL, maximization of crossbred performance one generation at a time resulted in similar responses as optimization across all generations and simultaneous optimal selection in a male and female line resulted in greater response than optimal selection within a single line without crossbreeding. Results show that strategic use of information on over-dominant QTL can enhance crossbred performance without crossbred testing.  相似文献   
2.
In contrast to our previous report (Biochem. Biophys. Res. Comm. 134:587, 1986), we now find that protein kinase C (PKC) is mobilized in human polymorphonuclear neutrophils (PMN) stimulated with platelet-activating factor (PAF) or leukotriene (LT)B4. Thus nanomolar concentrations of each compound caused PMN to lose cytosolic, PKC-specific protein phosphorylating activity, as well as receptors for phorbol myristate acetate (PMA). Smaller gains in membrane-associated PMA receptors accompanied these changes. Diacylglycerol and PMA had very similar effects on PKC. However, unlike these direct PKC activators, PAF and LTB4 induced only moderate decreases in cytosolic PKC; acted only on PMN pretreated with cytochalasin B; did not mobilize PKC in disrupted PMN or activate PKC in a cell-free system; and with respect to PAF, induced responses that partially reversed within 30 min. Furthermore, PAF, LTB4, and several of their structural analogues mobilized PKC at concentrations correlating closely with their respective affinities for cellular LTB4 or PAF receptors. Thus PAF and LTB4 acted by indirect and apparently receptor-mediated mechanisms. Four observations indicated that the cytochalasin B-dependent degranulating actions of PAF and LTB4 involved PKC. First, PKC mobilization and degranulation occurred at the same stimulus concentrations. Second, 5-hydroxyicosatetraenoate dramatically enhanced both PKC mobilization and degranulation when elicited by PAF; it had relatively little influence on LTB4-induced responses. Third, PAF-induced mobilization (t1/2 less than 7 sec) preceded degranulation (t1/2 approximately 20 sec). Finally, a PKC blocker, polymyxin B, was similarly effective in inhibiting degranulation responses to PAF, LTB4, and PMA. Because stimulated PMN may produce and use PAF, LTB4, and 5-hydroxyicosatetraenoate as secondary intracellular mediators, our results implicate PKC as a central and potentially critical regulator of function.  相似文献   
3.
Single- (whole-cell patch) and two-electrode voltage-clamp techniques were used to measure transient (Ifast) and sustained (Islow) calcium currents, linear capacitance, and slow, voltage-dependent charge movements in freshly dissociated fibers of the flexor digitorum brevis (FDB) muscle of rats of various postnatal ages. Peak Ifast was largest in FDB fibers of neonatal (1-5 d) rats, having a magnitude in 10 mM external Ca of 1.4 +/- 0.9 pA/pF (mean +/- SD; current normalized by linear fiber capacitance). Peak Ifast was smaller in FDB fibers of older animals, and by approximately 3 wk postnatal, it was so small as to be unmeasurable. By contrast, the magnitudes of Islow and charge movement increased substantially during postnatal development. Peak Islow was 3.6 +/- 2.5 pA/pF in FDB fibers of 1-5-d rats and increased to 16.4 +/- 6.5 pA/pF in 45-50-d-old rats; for these same two age groups, Qmax, the total mobile charge measurable as charge movement, was 6.0 +/- 1.7 and 23.8 +/- 4.0 nC/microF, respectively. As both Islow and charge movement are thought to arise in the transverse-tubular system, linear capacitance normalized by the area of fiber surface was determined as an indirect measure of the membrane area of the t-system relative to that of the fiber surface. This parameter increased from 1.5 +/- 0.2 microF/cm2 in 2-d fibers to 2.9 +/- 0.4 microF/cm2 in 44-d fibers. The increases in peak Islow, Qmax, and normalized linear capacitance all had similar time courses. Although the function of Islow is unknown, the substantial postnatal increase in its magnitude suggests that it plays an important role in the physiology of skeletal muscle.  相似文献   
4.
5-Hydroxyeicosatetraenoate (5-HETE), like leukotriene B4 and platelet-activating factor, stimulated human polymorphonuclear neutrophils to mobilize intracellular calcium. The three compounds acted through mechanisms that were inhibited by pertussis toxin, cholera toxin, and PMA. Each agonist, furthermore, desensitized (or down-regulated) the neutrophil's calcium mobilization response to a second challenge with the same agonist. However, 5-HETE and leukotriene B4 had little or no activity in cross-desensitizing neutrophil responses to each other or to platelet-activating factor. Furthermore, 5-HETE interfered minimally or not at all with the binding of radiolabeled leukotriene B4 and platelet-activating factor to their respective receptors on neutrophils. Thus, 5-HETE mobilizes neutrophil calcium by a mechanism different from those used by leukotriene B4 and platelet-activating factor. This mechanism appears to involve specific 5-HETE receptors that couple to pertussis toxin-inhibitable, GTP-binding proteins.  相似文献   
5.
The protein C kinase activators 1-O-oleoyl, 2-O-acetylglycerol, 12-O-tetradecanoyl phorbol-13-acetate, and mezerein, stimulated deoxyglucose uptake in human neutrophils. The responses were stimulus specific since no effect was noted with the diether analogues 1-O-hexadecyl-2-O-ethylglycerol, 1-O-palmitoyl-2-O-acetyl or 1-O-palmitoyl-3-O-acetyl diesters of propanediol, or with 1,2-diolein. Stimulation of deoxyglucose uptake had the characteristics of carrier facilitated hexose transport. Stimulated uptake of deoxy-glucose was inhibited by trifluoperazine (10-30 microM). Activation of protein kinase C therefore appears to trigger events involved in hexose transport.  相似文献   
6.
The synthesis of platelet activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) was studied in rabbit peritoneal polymorphonuclear neutrophils. Upon stimulation with ionophore A23187 and Ca2+, these cells are able to incorporate [3H]acetate or 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine into platelet activating factor. Under the same incubation conditions, however, the cells do not synthesize platelet activating factor from [14C]hexadecanol, which is an immediate precursor of O-alkyl chains in the de novo pathway. In the absence of ionophore, [14C] hexadecanol is incorporated into 1-O-alkyl-2-acyl-sn-glycerol-3-phosphate and subsequently into the 1-O-alkyl-linked choline and ethanolamine phosphoglyceride pools. However, in the presence of ionophore, [14C] hexadecanol incorporation is limited to phosphatidic acid, perhaps due to the inhibition of choline phosphotransferase. These findings provide strong evidence that platelet activating factor is synthesized by a deacylation-reacylation mechanism. Upon stimulation, these cells can utilize both plausible substrates of this pathway to make the final product, while under the same conditions it appears that a key step of the de novo pathway is inhibited.  相似文献   
7.
8.
1-O-Alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (AAGPC) triggered the release of [3H]arachidonate but not [14C]stearate from cellular phospholipids in cytochalasin B-treated rabbit polymorphonuclear leukocytes. Concentrations of AAGPC up to 20 nM caused a dose-dependent release and subsequent metabolism of the released [3H]arachidonic acid. Most of the release of the [3H]arachidonate had taken place within the first 2 min of stimulation. Phosphatidylinositol and phosphatidylcholine served as the sources of [3H]arachidonate with about 50% of the label coming from each pool. Challenge of cytochalasin B-treated polymorphonuclear leukocytes with AAPGC led to the production of [3H]hydroxyeicosatetraenoic acids and [3H]dihydroxyeicosatetraenoic acids. No significant production of [3H]prostaglandins or [3H]thromboxanes was detected. AAGPC also caused a dose-dependent degranulation of cytochalasin B-treated rabbit polymorphonuclear leukocytes as shown by the release of beta-glucuronidase and lysozyme. Both the AAGPC-stimulated production of arachidonate metabolites and the degranulation response were blocked by eicosatetraynoic acid and non-dihydroguaiaretic acid at similar inhibitor concentrations. These findings suggest the bioactions of AAGPC on polymorphonuclear leukocytes may be mediated by the release of arachidonic acid and the production of mono- and dihydroxyeicosatetraenoic acids.  相似文献   
9.
N-Formyl-methionyl-leucyl-phenylalanine (fMLP) and leukotriene B4 stimulate human polymorphonuclear neutrophils (PMN) to translocate protein kinase C from the cytosol to plasmalemma as judged by their abilities to increase PMN binding of and receptor numbers for [3H]phorbol dibutyrate [( 3H]PDB) (O'Flaherty, J.T., Jacobson, D.P., Redman, J.F., and Rossi, A.G. (1990) J. Biol. Chem. 265, 9146-9152). Platelet-activating factor (PAF) had these same effects. Moreover, two potent PAF analogs (but not an inactive analog) increased [3H]PDB binding; a PAF antagonist blocked responses to PAF without altering those to fMLP; and PMN treated with PAF became desensitized to PAF while retaining sensitivity to fMLP. Indeed, PMN incubated with 1-100 nM PAF for 5-40 min had markedly enhanced [3H]PDB binding responses to fMLP. PAF thus acted through its receptors to stimulate and prime protein kinase C translocation. Its effects, however, did not necessarily proceed by a standard mechanism: Ca2(+)-depleted PMN failed to raise Fura-2-monitored cytosolic Ca2+ concentrations [( Ca2+]i), yet increased [3H]PDB binding and receptor numbers almost normally after PAF challenge. PAF also primed Ca2(+)-depleted PMN to fMLP. Nevertheless, [3H]PDB binding responses to PAF were blocked in PMN loaded with Ca2+ chelators, viz. Quin 2, Fura-2, or 5,5'-dimethyl-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Exogenous Ca2+ reversed Quin 2 inhibition, and a weak chelator 4,4'-difluoro-BAPTA, lacked inhibitory actions. The chelators similarly influenced fMLP and leukotriene B4. Thus, PMN can by-pass [Ca2+]i to translocate protein kinase C. They may achieve this using a regulatable pool of Ca2+ that evades conventional [Ca2+]i monitors or a signal that needs cell Ca2+ to form and/or act. This signal may mediate function in Ca2(+)-depleted cells, the actions of [Ca2+]i-independent stimuli, cell priming, and protein kinase C movements that otherwise seem [Ca2+]i-induced.  相似文献   
10.
For a finite locus model, Markov chain Monte Carlo (MCMC) methods can be used to estimate the conditional mean of genotypic values given phenotypes, which is also known as the best predictor (BP). When computationally feasible, this type of genetic prediction provides an elegant solution to the problem of genetic evaluation under non-additive inheritance, especially for crossbred data. Successful application of MCMC methods for genetic evaluation using finite locus models depends, among other factors, on the number of loci assumed in the model. The effect of the assumed number of loci on evaluations obtained by BP was investigated using data simulated with about 100 loci. For several small pedigrees, genetic evaluations obtained by best linear prediction (BLP) were compared to genetic evaluations obtained by BP. For BLP evaluation, used here as the standard of comparison, only the first and second moments of the joint distribution of the genotypic and phenotypic values must be known. These moments were calculated from the gene frequencies and genotypic effects used in the simulation model. BP evaluation requires the complete distribution to be known. For each model used for BP evaluation, the gene frequencies and genotypic effects, which completely specify the required distribution, were derived such that the genotypic mean, the additive variance, and the dominance variance were the same as in the simulation model. For lowly heritable traits, evaluations obtained by BP under models with up to three loci closely matched the evaluations obtained by BLP for both purebred and crossbred data. For highly heritable traits, models with up to six loci were needed to match the evaluations obtained by BLP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号