首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2014年   3篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2001年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
The emerging resistance to artemisinin derivatives that has been reported in South-East Asia led us to assess the efficacy of artemether-lumefantrine as the first line therapy for uncomplicated Plasmodium falciparum infections in Suriname. This drug assessment was performed according to the recommendations of the World Health Organization in 2011. The decreasing number of malaria cases in Suriname, which are currently limited to migrating populations and gold miners, precludes any conclusions on artemether efficacy because adequate numbers of patients with 28-day follow-up data are difficult to obtain. Therefore, a comparison of day 3 parasitaemia in a 2011 study and in a 2005/2006 study was used to detect the emergence of resistance to artemether. The prevalence of day 3 parasitaemia was assessed in a study in 2011 and was compared to that in a study in 2005/2006. The same protocol was used in both studies and artemether-lumefantrine was the study drug. Of 48 evaluable patients in 2011, 15 (31%) still had parasitaemia on day 3 compared to one (2%) out of 45 evaluable patients in 2005/2006. Overall, 11 evaluable patients in the 2011 study who were followed up until day 28 had negative slides and similar findings were obtained in all 38 evaluable patients in the 2005/2006 study. The significantly increased incidence of parasite persistence on day 3 may be an indication of emerging resistance to artemether.  相似文献   
2.
With the increasing prevalence of antibiotic resistance, antimicrobial enzymes aimed at the disruption of bacterial cellular machinery and biofilm formation are under intense investigation. Several enzyme-based products have already been commercialized for application in the healthcare, food and biomedical industries. Successful removal of complex biofilms requires the use of multi-enzyme formulations that contain enzymes capable of degrading microbial DNA, polysaccharides, proteins and quorum-sensing molecules. The inclusion of anti-quorum sensing enzymes prevents biofilm reformation. The development of effective complex enzyme formulations is urgently needed to deal with the problems associated with biofilm formation in manufacturing, environmental protection and healthcare settings. Nevertheless, advances in synthetic biology, enzyme engineering and whole DNA-Sequencing technologies show great potential to facilitate the development of more effective antimicrobial and anti-biofilm enzymes.  相似文献   
3.
Laccase-mediated grafting of functional molecules presents an eco-friendly approach to functionalize lignocellulose materials. In this study functional molecules in the form of reactive phenolic amines, hydrophobicity enhancing fluorophenols and selected wood preservatives, were for the first time successfully coupled onto the lignin model compound dibenzodioxocin (Db) as demonstrated by HPLC-MS analysis. A 1:1-coupling was demonstrated for various combinations including Db and tyramine (m/z 620.5), Db and 3-O-methyldopamine (m/z 650.5), Db and 4-hydroxy-3-methoxybenzylamine (m/z 636.5), Db and 4-fluoro-2-methylphenol (m/z 609.5), and Db and 2-phenylphenol (m/z 653.5). Fungal laccases from Trametes hirsuta and T. villosa were more efficient in mediating the coupling of tyramine to dibenzodioxocin and beech (Fagus sylvatica) wood than a Bacillus sp. laccase with lower redox potential. This work presents for the first time a model for functionalizing of lignocellulose using the lignin model dibenzodioxocin.  相似文献   
4.

Background

Cytokinin is a plant hormone that plays a crucial role in several processes of plant growth and development. In recent years, major breakthroughs have been achieved in the elucidation of the metabolism, the signal perception and transduction, as well as the biological functions of cytokinin. An important activity of cytokinin is the involvement in chloroplast development and function. Although this biological function has already been known for 50 years, the exact mechanisms remain elusive.

Results

To elucidate the effects of altered endogenous cytokinin content on the structure and function of the chloroplasts, chloroplast subfractions (stroma and thylakoids) from transgenic Pssu-ipt and 35S:CKX1 tobacco (Nicotiana tabacum) plants with, respectively, elevated and reduced endogenous cytokinin content were analysed using two different 2-DE approaches. Firstly, thykaloids were analysed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (BN/SDS-PAGE). Image analysis of the gel spot pattern thus obtained from thylakoids showed no substantial differences between wild-type and transgenic tobacco plants. Secondly, a quantitative DIGE analysis of CHAPS soluble proteins derived from chloroplast subfractions indicated significant gel spot abundance differences in the stroma fraction. Upon identification by MALDI-TOF/TOF mass spectrometry, these proteins could be assigned to the Calvin-Benson cycle and photoprotective mechanisms.

Conclusion

Taken together, presented proteomic data reveal that the constitutively altered cytokinin status of transgenic plants does not result in any qualitative changes in either stroma proteins or protein complexes of thylakoid membranes of fully developed chloroplasts, while few but significant quantitative differences are observed in stroma proteins.  相似文献   
5.
This study combines the properties of siloxanes and lignin polymers to produce hybrid functional polymers that can be used as adhesives, coating materials, and/or multifunctionalized thin-coating films. Lignin-silica hybrid copolymers were synthesized by using a sol-gel process. Laccases from Trametes hirsuta were used to oxidize lignosulphonates to enhance their reactivity towards siloxanes and then were incorporated into siloxane precursors undergoing a sol-gel process. In vitro copolymerization studies using pure lignin monomers with aminosilanes or ethoxytrimethylsilane and analysis by 2?Si NMR spectroscopy revealed hybrid products. Except for kraft lignin, an increase in lignin concentration positively affected the tensile strength in all samples. Similarly, the viscosity generally increased in all samples with increasing lignin concentration and also affected the curing time.  相似文献   
6.

Background

The karyotypes of Leptodactylus species usually consist of 22 bi-armed chromosomes, but morphological variations in some chromosomes and even differences in the 2n have been reported. To better understand the mechanisms responsible for these differences, eight species were analysed using classical and molecular cytogenetic techniques, including replication banding with BrdU incorporation.

Results

Distinct chromosome numbers were found: 2n = 22 in Leptodactylus chaquensis, L. labyrinthicus, L. pentadactylus, L. petersii, L. podicipinus, and L. rhodomystax; 2n = 20 in Leptodactylus sp. (aff. podicipinus); and 2n = 24 in L. marmoratus. Among the species with 2n = 22, only three had the same basic karyotype. Leptodactylus pentadactylus presented multiple translocations, L. petersii displayed chromosome morphological discrepancy, and L. podicipinus had four pairs of telocentric chromosomes. Replication banding was crucial for characterising this variability and for explaining the reduced 2n in Leptodactylus sp. (aff. podicipinus). Leptodactylus marmoratus had few chromosomes with a similar banding patterns to the 2n = 22 karyotypes. The majority of the species presented a single NOR-bearing pair, which was confirmed using Ag-impregnation and FISH with an rDNA probe. In general, the NOR-bearing chromosomes corresponded to chromosome 8, but NORs were found on chromosome 3 or 4 in some species. Leptodactylus marmoratus had NORs on chromosome pairs 6 and 8. The data from C-banding, fluorochrome staining, and FISH using the telomeric probe helped in characterising the repetitive sequences. Even though hybridisation did occur on the chromosome ends, telomere-like repetitive sequences outside of the telomere region were identified. Metaphase I cells from L. pentadactylus confirmed its complex karyotype constitution because 12 chromosomes appeared as ring-shaped chain in addition to five bivalents.

Conclusions

Species of Leptodactylus exhibited both major and minor karyotypic differences which were identified by classical and molecular cytogenetic techniques. Replication banding, which is a unique procedure that has been used to obtain longitudinal multiple band patterns in amphibian chromosomes, allowed us to outline the general mechanisms responsible for these karyotype differences. The findings also suggested that L. marmoratus, which was formerly included in the genus Adenomera, may have undergone great chromosomal repatterning.
  相似文献   
7.
L-Lactate dehydrogenase (L-LDH, E.C. 1.1.1.27) is encoded by two or three loci in all vertebrates examined, with the exception of lampreys, which have a single LDH locus. Biochemical characterizations of LDH proteins have suggested that a gene duplication early in vertebrate evolution gave rise to Ldh-A and Ldh-B and that an additional locus, Ldh-C arose in a number of lineages more recently. Although some phylogenetic studies of LDH protein sequences have supported this pattern of gene duplication, others have contradicted it. In particular, a number of studies have suggested that Ldh-C represents the earliest divergence among vertebrate LDHs and that it may have diverged from the other loci well before the origin of vertebrates. Such hypotheses make explicit statements about the relationship of vertebrate and invertebrate LDHs, but to date, no closely related invertebrate LDH sequences have been available for comparison. We have attempted to provide further data on the timing of gene duplications leading to multiple vertebrate LDHs by determining the cDNA sequence of the LDH of the tunicate Styela plicata. Phylogenetic analyses of this and other LDH sequences provide strong support for the duplications giving rise to multiple vertebrate LDHs having occurred after vertebrates diverged from tunicates. The timing of these LDH duplications is consistent with data from a number of other gene families suggesting widespread gene duplication near the origin of vertebrates. With respect to the relationships among vertebrate LDHs, our data are not consistent with previous claims that Ldh-C represented the earliest divergence. However, the precise relationships among some of the main lineages of vertebrate LDHs were not resolved in our analyses.   相似文献   
8.
Many industries are currently pursuing enzymatic approaches for developing green chemistry technologies mainly due to shortcomings of physico-chemical methods, growing environmental concerns, legal restrictions, and increasing scientific knowledge. Laccase-assisted reactions, in particular, are being intensively investigated as they are generally eco-friendly and have wide application potential. Laccases only require oxygen as co-substrate, they release water as the only by-product and have a wide substrate range which can be further extended by use of laccase-mediator systems. Consequently, research covering various applications of laccase has been rapidly increasing in recent years, particularly in the areas of coupling and grafting reactions. This review summarizes the advances that have been made in developing technologies based on laccase-mediated coupling and grafting reactions for potential application in areas such as environmental pollution control, modification of lignocellulose materials, food industry, biosensors, textile industry, pharmaceutical industry, and in organic synthesis.  相似文献   
9.
10.
The infection by COVID-19 is a serious global public health problem. An efficient way to improve this disease's clinical management would be to characterize patients at higher risk of progressing to critically severe infection using prognostic biomarkers. The telomere length could be used for this purpose. Telomeres are responsible for controlling the number of maximum cell divisions. The telomere length is a biomarker of aging and several diseases. We aimed to compare leukocyte telomere length (LTL) between patients without COVID-19 and patients with different clinical severity of the infection. Were included 53 patients who underwent SARS-CoV-2 PCR divided in four groups. The first group was composed by patients with a negative diagnosis for COVID-19 (n = 12). The other three groups consisted of patients with a confirmed diagnosis of COVID-19 divided according to the severity of the disease: mild (n = 15), moderate (n = 17) and severe (n = 9). The LTL was determined by Q-PCR. The severe group had the shortest LTL, followed by the moderate group. The negative and mild groups showed no differences. There is an increase of patients with hypertension (p = 0.0099) and diabetes (p = 0.0067) in moderate and severe groups. Severe group was composed by older patients in comparison with the other three groups (p = 0.0083). Regarding sex, there was no significant difference between groups (p = 0.6279). In an ordinal regression model, only LTL and diabetes were significantly associated with disease severity. Shorter telomere length was significantly associated with the severity of COVID-19 infection, which can be useful as a biomarker or to better understand the SARS-CoV-2 pathophysiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号