首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2013年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Leaf biomechanical properties have the potential to act as antiherbivore defences. However, compared with studies on chemical defences, there are few studies that have demonstrated that the physical or biomechanical structure of plants can prevent or influence herbivory. This difference in focus by ecologists may relate to the dominant paradigm of plant chemical defences in ecological research and the perceived difficulties that ecologists have with the engineering principles embedded in biomechanics. The advantage of using materials engineering concepts is that each property is precisely defined and quantifiable, although the latter may be difficult in leaves because of their composite and anisotropic nature. Most herbivory studies have used simple penetrometers to measure leaf properties, often termed ‘toughness’. As defined in materials engineering, the measured properties are ‘force to fracture’ and ‘strength’, not toughness. Measurement of strength, the resistance to crack initiation, is relevant to understanding herbivory. Measurement of ‘toughness’ as defined by materials engineering is also relevant. Toughness is the resistance to crack propagation and is a measure of the energy required to fracture the leaf. This requires more sophisticated equipment than simple penetrometers because it requires a simultaneous measure of the punch displacement. In addition, purists would argue that a punch cannot be used to measure true toughness because the crack is not controlled and plastic deformation is also involved. However, it may be the only method that allows detection of fine‐scale pattern in mechanical properties across a leaf surface at a scale that is relevant to herbivory. There is very little work on the scale at which these properties vary, particularly with regard to different sized herbivores. In addition, few studies have investigated a broad range of relevant biomechanical properties in relation to herbivory. Therefore, it is not possible yet to be definitive about the relative merits of the various types of tests. A single test might show a pattern in relation to herbivore damage at a gross level. However, to really understand the functional and ecological significance of leaf texture in relation to herbivory, a more reductionist approach is needed. Only then can we move on to the larger scales of pattern that many ecologists are seeking.  相似文献   
2.
Colonies of Atta cephalotes (Myrmicinae: Formicidae) construct cleared paths between their nest and the vegetation sources at which they harvest leaf tissue. Here, we employ ideas from traffic engineering to study streams of laden and unladen ants on these paths. The relationship between average traffic speed and the concentration of workers on the road surface follows a relationship similar to what is expected by analogy to fluid dynamics. Although the traffic is composed of eusocial organisms with a common interest in group success, the coarse-grained behavior of Atta traffic displays little more coordination than a moving fluid. The relationship between speed and concentration implies that maximum flow rates (which are likely to be closely tied to colony-level rates of resource acquisition) occur at a relatively high concentration that keeps individual speeds well below their "free flow" maximum. We predict that this optimal concentration will characterize peak traffic throughout a trail network, and we propose a simple behavioral mechanism that would allow trails to be cleared to the correct width to provide the optimal concentration. Collisions (including encounters for antennation) are common in leaf-cutting ant traffic because traffic is not segregated into unidirectional streams. Nonetheless, we find a counterintuitive suggestion that flow rates (with concentration differences statistically removed) are higher when traffic is near a 50:50 mix of outbound and returning ants than when it contains majority flows in a single direction. Mixed-direction traffic may help disperse laden ants with reduced agility, thereby preventing inhomogeneities in the traffic stream that could clog the trail.  相似文献   
3.
Summary. Trail traffic of the leaf-cutting ant Atta cephalotes involves intermingled flows of outbound and returning foragers. Head-on encounters between workers from the opposite flows are a common occurrence in this traffic. Each encounter momentarily delays the two ants involved, and these small delays might pose a significant cost to the colony's foraging performance when summed over thousands of workers along many metres of trail. We videotaped outbound and returning foragers over a 1 m course, and measured the encounter rates they experienced and their velocity. Our analysis indicates that locomotion speed is diminished by increasing encounter rate, but that the effect is small relative to the effects of ant body size and load mass. Head-on encounters allow exchange of information and leaf fragments between workers, and we consider how the benefits of such encounters may make this form of traffic organization superior to segregated outbound and returning lanes, despite the measurable c ost of encounters in mixed traffic.  相似文献   
4.
ABSTRACT

A previous study of 19 south-east Australian heath and forest species with a range of leaf textures showed that they varied considerably in leaf biomechanical properties. By using an index of sclerophylly derived from botanists' rankings (botanists' sclerophylly index, BSI) we determined that leaves considered by botanists to be sclerophyllous generally had both high strength and work to fracture (particularly in punching and tearing tests), both at the level of leaf and per unit leaf thickness. In the current study we have shown that leaves from the same species also varied considerably in leaf specific mass (46–251 g m-2), neutral detergent fibre concentration (20–59% on a dry weight basis) and in leaf anatomy. Multiple regression indicated a very strong correlation between BSI and the first two components of a principal components analysis (PCA) of leaf anatomy (R 2 = 0.91). In addition, there was strong correlation between the first component of a PCA of the mechanical properties (correlated with BSI) and the two axes derived from anatomical characteristics (R 2 = 0.66). The anatomical properties contributing most to the significant component axes were thickness of palisade mesophyll and upper cuticle (axis 1) and percentage fibre (neutral detergent fibre) and lower epidermis thickness (axis 2). However, whether these relationships are causal, or reflect correlations with characteristics not measured in this study, such as vascularization and sclerification, is not clear. At a finer scale, however, there is evidence that there are various ways to be sclerophyllous, both in terms of anatomical and mechanical properties. This is illustrated by comparison of two of the sclerophyllous species, Eucalyptus baxteri and Banksia marginata.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号