首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
2-Methoxyestradiol (2ME), a promising anti-tumor agent, is currently tested in phase I/II clinical trial to assess drug tolerance and clinical effects. 2ME is known to affect microtubule (MT) polymerization rather than act through estrogen receptors. We hypothesized that 2ME, similar to other MT inhibitors, disrupts endothelial barrier properties. We show that 2ME decreases transendothelial electrical resistance and increases FITC-dextran leakage across human pulmonary artery endothelial monolayer, which correlates with 2ME-induced MT depolymerization. Pretreatment of endothelium with MT stabilizer taxol significantly attenuates the decrease in transendothelial resistance. 2ME treatment results in the induction of F-actin stress fibers, accompanied by the increase in myosin light chain (MLC) phosphorylation. The experiments with Rho kinase (ROCK) and MLC kinase inhibitors and ROCK small interfering RNA (siRNA) revealed that increase in MLC phosphorylation is attributed to the ROCK activation rather than MLC kinase activation. 2ME induces significant ERK1/2, p38, and JNK phosphorylation and activation; however, only p38 activation is relevant to the 2ME-induced endothelial hyperpermeability. p38 activation is accompanied by a marked increase in MAPKAP2 and 27-kDa heat shock protein (HSP27) phosphorylation level. Taxol significantly decreases p38 phosphorylation and activation in response to 2ME stimulation. Vice versa, p38 inhibitor SB203580 attenuates MT rearrangement in 2ME-challenged cells. Together, these results indicate that 2ME-induced barrier disruption is governed by MT depolymerization and p38- and ROCK-dependent mechanisms. The fact that certain concentrations of 2ME induce endothelial hyperpermeability suggests that the issue of the maximum-tolerated dose of 2ME for cancer treatment should be addressed with caution.  相似文献   
2.
Although migraine has mainly been considered as a benign disease, there is cumulative evidence of silent changes in the brain, brainstem, or cerebellum and subtle subclinical cerebellar dysfunction. In this study, in order to investigate a possible neuronal and/or glial damage at the cellular level in migraine, we measured and compared serum levels of S100B which is a protein marker of glial damage or activation, and neuron specific enolase (NSE) which is a marker of neuronal damage, in migraine patients and control subjects. Serum levels of S100B and NSE were measured in blood samples from 41 patients with migraine-without aura taken during a migraine attack (ictal) and in the attack-free period between migraine attacks (interictal) and 35 age- and sex-matched controls. Patients with migraine-without aura had significantly higher ictal serum levels of S100B and NSE (P < 0.05, for both) than control subjects; whereas in the interictal phase, there was a significant increment only in S100B levels (P < 0.05) compared to controls. On the other hand, serum levels of S100B and NSE in ictal and interictal blood samples did not differ significantly. The findings of increased ictal serum S100B and NSE levels together with increased interictal levels of S100B suggested that migraine might be associated with glial and/or neuronal damage in the brain and a prolonged disruption of blood–brain barrier. Increased interictal serum levels of S100B might point out to an insidious and slow damaging process in migraine patients.  相似文献   
3.
Bacterial response to metals can require complex regulation. We report an overlapping regulation for copper and zinc resistance genes in the denitrifying bacterium, Pseudomonas stutzeri RCH2, by three two‐component regulatory proteins CopR1, CopR2 and CzcR. We conducted genome‐wide evaluations to identify gene targets of two paralogous regulators, CopR1 and CopR2, annotated for copper signaling, and compared the results with the gene targets for CzcR, implicated in zinc signaling. We discovered that the CopRs and CzcR have largely common targets, and crossregulate a core set of P. stutzeri copper and zinc responsive genes. We established that this crossregulation is enabled by a conserved binding motif in the upstream regulatory regions of the target genes. The crossregulation is physiologically relevant as these regulators synergistically and antagonistically target multicopper oxidases, metal efflux and sequestration systems. CopR1 and CopR2 upregulate two cop operons encoding copper tolerance genes, while all three regulators downregulate a putative copper chaperone, Psest_1595. CzcR also upregulated the oprD gene and the CzcIABC Zn2+ efflux system, while CopR1 and CopR2 downregulated these genes. Our study suggests that crossregulation of copper and zinc homeostasis can be advantageous, and in P. stutzeri this is enabled by shared binding motifs for multiple response regulators.  相似文献   
4.
In vivo models of airway inflammation suggest that most protein transudation occurs from bronchial microcirculation. However, due to technical limitations in the isolation and culture of bronchial endothelial cells, most studies of lung vascular permeability have focused on pulmonary endothelium. Thus conditions for culture of sheep bronchial artery endothelial cells (BAEC) and bronchial microvascular endothelial cells (BMVEC) were established. The bronchial artery and the mainstem bronchi, stripped of epithelium, were dissected, and endothelial cells were isolated by enzymatic treatment. BAEC and BMVEC demonstrated positive staining for factor VIII-related antigen, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-labeled low-density lipoprotein, and PECAM-1. Radioligand binding studies confirmed equivalent numbers of bradykinin B(2) receptors on BAEC and BMVEC. Permeability of BAEC and BMVEC was determined after treatment with bradykinin and thrombin by comparing the translocation of FITC-dextran (mol wt 9,500) across confluent monolayers (n = 10-12). Bradykinin caused a maximal increase in permeability in BAEC (165% increase) and BMVEC (144% increase) by 15 min compared with vehicle controls. Thrombin treatment altered BMVEC permeability only, reaching a maximal response at 60 min (109% increase). These results demonstrate bronchial endothelial cell heterogeneity and establish methods to determine intracellular mechanisms contributing to airway disease in relevant cell systems.  相似文献   
5.
Hyaluronan (HA), a glycosaminoglycan critical to the lung extracellular matrix, has been shown to dissociate into low-molecular-weight (LMW) HA fragments following exposure to injurious stimuli. In the present study we questioned whether lung HA changed during ischemia and whether changes had an effect on subsequent angiogenesis. After left pulmonary artery ligation (LPAL) in mice, we analyzed left lung homogenates immediately after the onset of ischemia (0 h) and intermittently for 14 days. The relative expression of HA synthase (HAS)1, HAS2, and HAS3 was determined by real-time RT-PCR, total HA in the lung was measured by an ELISA-like assay, gel electrophoresis was performed to determine changes in HA size distribution, and the activity of hyaluronidases was determined by zymography. A 50% increase in total HA was measured 16 h after the onset of ischemia and remained elevated for up to 7 days. Furthermore, a fourfold increase in LMW HA fragments (495-30 kDa) was observed by 4 h after LPAL. Both HAS1 and HAS2 showed increased expression 4-16 h after LPAL, yet no changes were seen in hyaluronidase activity. These results suggest that both HA fragmentation and activation of HA synthesis contribute to increased HA levels during lung ischemia. Delivery of LMW HA fragments in an in vitro tube formation assay or directly to the ischemic mouse lung in vivo both resulted in increased angiogenesis. We conclude that ischemic injury results in matrix fragmentation, which leads to stimulation of neovascularization.  相似文献   
6.
Lung inflammation and alterations in endothelial cell (EC) permeability are key events to development of acute lung injury (ALI). Protective effects of atrial natriuretic peptide (ANP) have been shown against inflammatory signaling and endothelial barrier dysfunction induced by gram-negative bacterial wall liposaccharide. We hypothesized that ANP may possess more general protective effects and attenuate lung inflammation and EC barrier dysfunction by suppressing inflammatory cascades and barrier-disruptive mechanisms shared by gram-negative and gram-positive pathogens. C57BL/6J wild-type or ANP knockout mice (Nppa-/-) were treated with gram-positive bacterial cell wall compounds, Staphylococcus aureus-derived peptidoglycan (PepG) and/or lipoteichoic acid (LTA) (intratracheal, 2.5 mg/kg each), with or without ANP (intravenous, 2 μg/kg). In vitro, human pulmonary EC barrier properties were assessed by morphological analysis of gap formation and measurements of transendothelial electrical resistance. LTA and PepG markedly increased pulmonary EC permeability and activated p38 and ERK1/2 MAP kinases, NF-κB, and Rho/Rho kinase signaling. EC barrier dysfunction was further elevated upon combined LTA and PepG treatment, but abolished by ANP pretreatment. In vivo, LTA and PepG-induced accumulation of protein and cells in the bronchoalveolar lavage fluid, tissue neutrophil infiltration, and increased Evans blue extravasation in the lungs was significantly attenuated by intravenous injection of ANP. Accumulation of bronchoalveolar lavage markers of LTA/PepG-induced lung inflammation and barrier dysfunction was further augmented in ANP-/- mice and attenuated by exogenous ANP injection. These results strongly suggest a protective role of ANP in the in vitro and in vivo models of ALI associated with gram-positive infection. Thus ANP may have important implications in therapeutic strategies aimed at the treatment of sepsis and ALI-induced gram-positive bacterial pathogens.  相似文献   
7.
The anthocyanin delphinidin is a natural compound found as water-soluble pigment in coloured fruits and berries. Anthocyanin-rich diets have been proposed to have bone protective effects in humans and mice, but the underlying mechanisms remain unclear. In this study, we used a medaka (Oryzias latipes) osteoporosis model to test the effects of delphinidin on bone cells in vivo. In this model, inducible transgenic expression of receptor-activator of NF-kβ ligand (Rankl) leads to ectopic formation of osteoclasts and excessive bone resorption, similar to the situation in human osteoporosis patients. Using live imaging in medaka bone reporter lines, we show that delphinidin significantly reduces the number of osteoclasts after Rankl induction and protects bone integrity in a dose-dependent manner. Our in vivo findings suggest that delphinidin primarily affects the de novo differentiation of macrophages into osteoclasts rather than the recruitment of macrophages to sites of bone resorption. For already existing osteoclasts, delphinidin treatment affected their morphology, leading to fewer protrusions and a more spherical shape. Apoptosis rates were not increased by delphinidin, suggesting that osteoclast numbers were reduced primarily by impaired differentiation from macrophage progenitors and reduced maintenance of pre-existing osteoclasts. Importantly, and in contrast to previously reported cell culture experiments, no effect of delphinidin on osteoblast differentiation and distribution was observed in medaka in vivo. Our study is the first report on the effects of delphinidin on bone cells in fish embryos, which are a unique model system for compound testing that is suitable for live imaging of bone cell behaviour in vivo.  相似文献   
8.
Angiogenesis in the lung involves the systemic bronchial vasculature and becomes prominent when chronic inflammation prevails. Mechanisms for neovascularization following pulmonary ischemia include growth factor transit from ischemic parenchyma to upstream bronchial arteries, inflammatory cell migration/recruitment through the perfusing artery, and paracrine effects of lung cells within the left bronchus, the niche where arteriogenesis takes place. We analyzed left lung bronchoalveolar lavage (BAL) fluid and left bronchus homogenates after left pulmonary artery ligation (LPAL) in rats, immediately after the onset of ischemia (0 h), 6 h and 24 h later. Additionally, we tested the effectiveness of dexamethasone on decreasing inflammation (0–24 h LPAL) and angiogenesis at early (3 d LPAL; bronchial endothelial proliferation) and late (14 d LPAL; blood flow) stages. After LPAL (6 h), BAL protein, total inflammatory cells, macrophages, and polymorphonuclear cells increased significantly. In parallel, pro-angiogenic CXC chemokines increased in BAL and the left main-stem bronchus (CXCL1) or only within the bronchus (CXCL2). Dexamethasone treatment reduced total BAL protein, inflammatory cells (total and polymorphonuclear cells), and CXCL1 but not CXCL2 in BAL. By contrast, no decrease was seen in either chemokine within the bronchial tissue, in proliferating bronchial endothelial cells, or in systemic perfusion of the left lung. Our results confirm the presence of CXC chemokines within BAL fluid as well as within the left mainstem bronchus. Despite significant reduction in lung injury and inflammation with dexamethasone treatment, chemokine expression within the bronchial tissue as well as angiogenesis were not affected. Our results suggest that early changes within the bronchial niche contribute to subsequent neovascularization during pulmonary ischemia.  相似文献   
9.
Endothelial cell (EC) barrier dysfunction induced by inflammatory agonists is a frequent pathophysiologic event in multiple diseases. The platelet-derived phospholipid sphingosine-1 phosphate (S1P) reverses this dysfunction by potently enhancing the EC barrier through a process involving Rac GTPase-dependent cortical actin rearrangement as an integral step. In this study we explored the role of the ezrin, radixin, and moesin (ERM) family of actin-binding linker protein in modulating S1P-induced human pulmonary EC barrier enhancement. S1P induces ERM translocation to the EC periphery and promotes ERM phosphorylation on a critical threonine residue (Ezrin-567, Radixin-564, Moesin-558). This phosphorylation is dependent on activation of PKC isoforms and Rac1. The majority of ERM phosphorylation on these critical threonine residues after S1P occurs in moesin and ezrin. Baseline radixin phosphorylation is higher than in the other two ERM proteins but does not increase after S1P. S1P-induced moesin and ezrin threonine phosphorylation is not mediated by the barrier enhancing receptor S1PR1 because siRNA downregulation of S1PR1 fails to inhibit these phosphorylation events, while stimulation of EC with the S1PR1-specific agonist SEW2871 fails to induce these phosphorylation events. Silencing of either all ERM proteins or radixin alone (but not moesin alone) reduced S1P-induced Rac1 activation and phosphorylation of the downstream Rac1 effector PAK1. Radixin siRNA alone, or combined siRNA for all three ERM proteins, dramatically attenuates S1P-induced EC barrier enhancement (measured by transendothelial electrical resistance (TER), peripheral accumulation of di-phospho-MLC, and cortical cytoskeletal rearrangement. In contrast, moesin depletion has the opposite effects on these parameters. Ezrin silencing partially attenuates S1P-induced EC barrier enhancement and cytoskeletal changes. Thus, despite structural similarities and reported functional redundancy, the ERM proteins differentially modulate S1P-induced alterations in lung EC cytoskeleton and permeability. These results suggest that ERM activation is an important regulatory event in EC barrier responses to S1P.  相似文献   
10.
We previously showed increased expression of the ELR+, CXC chemokines in the lung after left pulmonary artery obstruction. These chemokines have been shown in other systems to bind their G protein-coupled receptor, CXCR(2), and promote systemic endothelial cell proliferation, migration, and capillary tube formation. In the present study, we blocked CXCR(2) in vivo using a neutralizing antibody and also studied mice that were homozygous null for CXCR(2). To estimate the extent of neovascularization in this model, we measured systemic blood flow to the left lung 14 days after left pulmonary artery ligation (LPAL). We found blood flow significantly reduced (67% decrease) with neutralizing antibody treatment compared with controls. However, blood flow was not altered in the CXCR(2)-deficient mice compared with wild-type controls after LPAL. To test for ligand availability, we measured macrophage inflammatory protein (MIP)-2 in lung homogenates after LPAL, because this is the predominant CXC chemokine previously shown to be increased after LPAL (22). MIP-2 protein was two- to fourfold higher in the left lung relative to the right lung in all treatment groups 4 h after LPAL and this increase did not differ among groups. We speculate that the CXCR(2)-deficient mice have compensatory mechanisms that mitigate their lack of gene expression and conclude that CXCR(2) contributes to chemokine-induced systemic angiogenesis after pulmonary artery obstruction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号