首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1616篇
  免费   119篇
  2024年   2篇
  2023年   12篇
  2022年   31篇
  2021年   54篇
  2020年   23篇
  2019年   38篇
  2018年   61篇
  2017年   50篇
  2016年   73篇
  2015年   105篇
  2014年   103篇
  2013年   128篇
  2012年   159篇
  2011年   139篇
  2010年   112篇
  2009年   75篇
  2008年   104篇
  2007年   83篇
  2006年   79篇
  2005年   57篇
  2004年   51篇
  2003年   31篇
  2002年   42篇
  2001年   19篇
  2000年   17篇
  1999年   15篇
  1998年   6篇
  1997年   7篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   7篇
  1990年   5篇
  1989年   2篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1982年   3篇
  1980年   1篇
  1978年   1篇
  1974年   2篇
  1971年   1篇
  1970年   2篇
  1966年   2篇
  1960年   2篇
  1952年   1篇
  1951年   1篇
排序方式: 共有1735条查询结果,搜索用时 93 毫秒
1.
The karyotypes of six species of Acestrorhynchinae ( Acestrorhynchus alus, A. lacustris, Oligosarcus hepsetus, O. jenynsii, O. macrolepis and O. pinloi ) and of one species of Cynopotaminae ( Galeocharax knerii ) were studied. The six Acestrorhynchinae species have 2 n = 50, while Galeocharax knerii has 2 n = 52 chromosomes. Some chromosomal characteristics were detected which permit establishing some karyotypic relationships among the different species investigated. Thus, among the Acestrorhynchinae, the four Oligosarcus species are relatively more related to one another than the two Acestrorhynchus species, at least with respect to the cytogenetic data considered. On the basis of the methods used, no sex chromosome heteromorphism was detected in the species for which a comparative study between male and female specimens was possible.  相似文献   
2.
Correct modeling of root water uptake partitioning over depth is an important issue in hydrological and crop growth models. Recently a physically based model to describe root water uptake was developed at single root scale and upscaled to the root system scale considering a homogeneous distribution of roots per soil layer. Root water uptake partitioning is calculated over soil layers or compartments as a function of respective soil hydraulic conditions, specifically the soil matric flux potential, root characteristics and a root system efficiency factor to compensate for within-layer root system heterogeneities. The performance of this model was tested in an experiment performed in two-compartment split-pot lysimeters with sorghum plants. The compartments were submitted to different irrigation cycles resulting in contrasting water contents over time. The root system efficiency factor was determined to be about 0.05. Release of water from roots to soil was predicted and observed on several occasions during the experiment; however, model predictions suggested root water release to occur more often and at a higher rate than observed. This may be due to not considering internal root system resistances, thus overestimating the ease with which roots can act as conductors of water. Excluding these erroneous predictions from the dataset, statistical indices show model performance to be of good quality.  相似文献   
3.
How often will elections end in landslides? What is the probability for a head-to-head race? Analyzing ballot results from several large countries rather anomalous and yet unexplained distributions have been observed. We identify tactical voting as the driving ingredient for the anomalies and introduce a model to study its effect on plurality elections, characterized by the relative strength of the feedback from polls and the pairwise interaction between individuals in the society. With this model it becomes possible to explain the polarization of votes between two candidates, understand the small margin of victories frequently observed for different elections, and analyze the polls'' impact in American, Canadian, and Brazilian ballots. Moreover, the model reproduces, quantitatively, the distribution of votes obtained in the Brazilian mayor elections with two, three, and four candidates.  相似文献   
4.
The effects of Rhizobium strain and its interaction with plant cultivar were examined in glasshouse-grownPhaseolus vulgaris in two experiments where the physiological attributes defining the symbiotic efficiency were determined. Strains of Rhizobium significantly affected nodulation, rates of N accumulation, partitioning of N within the mature shoot and remobilizaton of the N stored in the vegetative organs to the seeds. The most efficient symbiosis (strain CO5 with Negro Argel), in comparison with the least efficient symbiosis (strain 127 K-17 with Venezuela-350) showed higher rates of C2H2 reduction from flowering to mid pod fill stage, evolved less hydrogen from nodules and showed higher rates of N transport as well as higher percentages of ureide-N in the xylem sap. At maturity, the best cultivar/strain association exceeded the total N accumulated in the seed and the harvest index of the poorest symbiosis in 88% and 20%, respectively. The other symbiotic combinations were intermediate in all characteristics. Nitrogen accumulation in plant shoot showed highly significant correlation with acetylene reduction rates, nodule relative efficiency, total N transport in the xylem sap and percentage of N transported as ureides.  相似文献   
5.
6.
Analysis of nine characteristics on 1,205 males and 932 females from 12 tribes or groups of tribes indicated a poor relationship between morphology and language, as well as moderate agreement with the variability expected considering geography only. Two samples in the Xingu area studied during an interval of half a century (1897-1947) showed remarkable similarity. The conformity of the Caingang morphology with those of other tribes and the distinctiveness of the Xavante and Tenetehara has been amply confirmed.  相似文献   
7.
8.
The upper Tennessee River drainage, which includes portions of the States of Virginia, North Carolina, and Tennessee, supports an exceptionally diverse fish fauna. Recent reductions in abundance and geographic ranges of several freshwater fishes have promulgated the imposition of protective measures for about 115 species among the three states, with nearly half of those species occurring in the upper Tennessee River. Most protected species are darters (Percidae: Etheostomatinae) or minnows (Cyprinidae), and are typically small, benthic invertivores. Major impacts on the fish fauna have resulted from dams, introduced species, toxic spills, mining and agriculture. An important cumulative effect of these impacts is fragmentation of the watershed; nearly 40% of the riverine habitat in major tributaries is either impounded or altered by tailwater discharges. The isolation and stress imposed on tributaries of the river have caused and will continue to cause extirpations of fishes, mussels and other aquatic fauna. Numerous federal, state, and private organizations are co-operating in efforts to protect rare species and habitats, improve agricultural and coal-producing practices, and enforce regulations for industrial and municipal effluents.  相似文献   
9.
Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two–three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.  相似文献   
10.
Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号