首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   22篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   13篇
  2015年   12篇
  2014年   10篇
  2013年   9篇
  2012年   18篇
  2011年   10篇
  2010年   13篇
  2009年   14篇
  2008年   12篇
  2007年   7篇
  2006年   7篇
  2005年   12篇
  2004年   13篇
  2003年   8篇
  2002年   5篇
  2001年   7篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1986年   3篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1974年   1篇
  1970年   4篇
  1966年   1篇
排序方式: 共有237条查询结果,搜索用时 15 毫秒
1.
Lysine residues outside of the NADH-binding site in the soluble catalytic fragment of cytochrome b5 reductase were modified with ethyl acetimidate and acetic anhydride while the binding site was protected by formation of the stable oxidized nucleotide-reduced flavoprotein complex. This treatment had a minimal effect on enzyme activity; the turnover number with potassium ferricyanide was 45,300 in the native reductase and 39,200 in the derivative. Subsequent reaction with [3H]acetic anhydride after the removal of NADH resulted in the loss of 91% of the enzyme activity and the incorporation of 1.9 eq of acetyl groups into the protein. Treatment with 1 M hydroxylamine at pH 13 indicated that only lysine residues were acetylated, and fragmentation of the derivative with cyanogen bromide and subfragmentation with trypsin and chymotrypsin demonstrated that only Lys110 was labeled at high specific activity, with a stoichiometry of 0.83 acetyl groups/mol, in good agreement with the loss of enzyme activity observed. The remaining label was distributed at low levels among four or more additional lysine residues. These results demonstrate that only Lys110 is specifically protected by NADH and is therefore the residue which provides the epsilon-amino group implicated in NADH binding in cytochrome b5 reductase.  相似文献   
2.

Background  

The aim of this study was to evaluate long-term platinum retention in patients treated with cisplatin and oxaliplatin.  相似文献   
3.
4.
5.
6.
7.
8.
Biological Invasions - Introduction pathways play a pivotal role in the success of Invasive Alien Species (IAS)—the subset of alien species that have a negative environmental and/or...  相似文献   
9.
Within primates, the great apes are outliers both in terms of body size and lifespan, since they include the largest and longest-lived species in the order. Yet, the molecular bases underlying such features are poorly understood. Here, we leveraged an integrated approach to investigate multiple sources of molecular variation across primates, focusing on over 10,000 genes, including approximately 1,500 previously associated with lifespan, and additional approximately 9,000 for which an association with longevity has never been suggested. We analyzed dN/dS rates, positive selection, gene expression (RNA-seq), and gene regulation (ChIP-seq). By analyzing the correlation between dN/dS, maximum lifespan, and body mass, we identified 276 genes whose rate of evolution positively correlates with maximum lifespan in primates. Further, we identified five genes, important for tumor suppression, adaptive immunity, metastasis, and inflammation, under positive selection exclusively in the great ape lineage. RNA-seq data, generated from the liver of six species representing all the primate lineages, revealed that 8% of approximately 1,500 genes previously associated with longevity are differentially expressed in apes relative to other primates. Importantly, by integrating RNA-seq with ChIP-seq for H3K27ac (which marks active enhancers), we show that the differentially expressed longevity genes are significantly more likely than expected to be located near a novel “ape-specific” enhancer. Moreover, these particular ape-specific enhancers are enriched for young transposable elements, and specifically SINE–Vntr–Alus. In summary, we demonstrate that multiple evolutionary forces have contributed to the evolution of lifespan and body size in primates.  相似文献   
10.
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) on serine 51 integrates general translation repression with activation of stress-inducible genes such as ATF4, CHOP, and BiP in the unfolded protein response. We sought to identify new genes active in this phospho-eIF2alpha-dependent signaling pathway by screening a library of recombinant retroviruses for clones that inhibit the expression of a CHOP::GFP reporter. A retrovirus encoding the COOH terminus of growth arrest and DNA damage gene (GADD)34, also known as MYD116 (Fornace, A.J., D.W. Neibert, M.C. Hollander, J.D. Luethy, M. Papathanasiou, J. Fragoli, and N.J. Holbrook. 1989. Mol. Cell. Biol. 9:4196-4203; Lord K.A., B. Hoffman-Lieberman, and D.A. Lieberman. 1990. Nucleic Acid Res. 18:2823), was isolated and found to attenuate CHOP (also known as GADD153) activation by both protein malfolding in the endoplasmic reticulum, and amino acid deprivation. Despite normal activity of the cognate stress-inducible eIF2alpha kinases PERK (also known as PEK) and GCN2, phospho-eIF2alpha levels were markedly diminished in GADD34-overexpressing cells. GADD34 formed a complex with the catalytic subunit of protein phosphatase 1 (PP1c) that specifically promoted the dephosphorylation of eIF2alpha in vitro. Mutations that interfered with the interaction with PP1c prevented the dephosphorylation of eIF2alpha and blocked attenuation of CHOP by GADD34. Expression of GADD34 is stress dependent, and was absent in PERK(-)/- and GCN2(-)/- cells. These findings implicate GADD34-mediated dephosphorylation of eIF2alpha in a negative feedback loop that inhibits stress-induced gene expression, and that might promote recovery from translational inhibition in the unfolded protein response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号