首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   7篇
  国内免费   2篇
  80篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2017年   3篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1934年   1篇
  1929年   1篇
排序方式: 共有80条查询结果,搜索用时 0 毫秒
1.
The apple rootstock,A106(Malus sieboldii),had 17 bivalents in pollen mother cells at meiotic metaphase 1,and 17 chromosomes in a haploid pollen cell.Karyotypes were prepared from root-tip cells with 2n=34 chromosomes,Seven out of 82 karyotypes(8.5%) showed one pari of satellites at the end of the short arm of chromosome 3.C-bands were shown on 6 pairs of chromosomes 2,4,6,8,14,and 16 near the telomeric regions of short arms.Probes for three ripening-related genes from Malus x domestica:endopolygalacturonase(EPG,0.6kb),ACC oxidase(1.2kb),and ACC synthase(2kb)were hybridized in situ to metaphase chromosomes of A106.Hybridization sites for the EPG gene were observed on the long arm of chromosome 14 in 15 out of 16 replicate spreads and proximal to the centromere of chromosomes 6 and 11.For the ACC oxidase gene,hylridization sites were observed in the telomeric region of the short arm of chromosomes 5 and 11 in 87% and 81% of 16 spreads respectively,proxiaml to the centromere of chromosome 1 in 81% of the spreads,and on the long arm of chromosome 13 in 50% of the spreads. Physical mapping of three fruit ripening genes in an apple rootstock A106.Twenty five spreads were studied for the ACC synthase gene and hybridization sites were observed in the telomeric region of the short arm of chromosome 12 in 96% of the spreads.chromosomes 9 and 10 in 76% of the spreads,and chromosome 17 in 56% of the spreads.  相似文献   
2.
An evaluation of the factors affecting silage dry-matter intake (SDMI) of dairy cows was conducted based on dietary treatment means. The data were divided into six subsets based on the silage treatments used in the experiments: concentration of digestible organic matter in dry matter (D-value) influenced by the maturity of grass ensiled (n = 81), fermentation quality influenced by silage additives (n = 240), dry matter (DM) concentration influenced by wilting of grass prior to ensiling (W; n = 85), comparison of silages made from primary growth or regrowth of grass (n = 46), and replacement of grass silage with legume (L; n = 53) or fermented whole-crop cereal (WC; n = 37) silages. The data were subjected to the mixed model regression analysis. Both silage D-value and fermentation quality significantly affected SDMI. The average effects of D-value and total acid (TA) concentration were 17.0 g and − 12.8 per 1 g/kg DM, respectively. At a given D-value, silage neutral-detergent fibre (NDF) concentration tended to decrease SDMI. Silage TA concentration was the best fermentation parameter predicting SDMI. Adding other parameters into the multivariate models did not improve the fit and the slopes of the other parameters remained insignificant. Total NDF intake was curvilinearly related to silage D-value the maximum intake being reached at a D-value of 640 g/kg DM. Results imply that physical fill is not limiting SDMI of highly digestible grass silages and that both physical and metabolic factors constrain total DM intake in an interactive manner. Silage DM concentration had an independent curvilinear effect on SDMI. Replacing primary growth silage with regrowth, L or WC silages affected SDMI significantly, the response to regrowth silage being linearly decreasing and to L and WC quadratically increasing. The outcome of factors affecting SDMI was used to update the relative SDMI index as follows: SDMI index = 100+10 × [(D-value − 680) × 0.0170 − (TA − 80) × 0.0128+(0.0198 ×  (DM − 250) − 0.00002364 × (DM2 − 250 2)) − 0.44 × a+4.13 × b − 2.58 × b2+5.90 × c − 6.14 × c2 − 0.0023 × (550 − NDF)], where a, b and c represent the proportions (0–1) of regrowth, L or WC silages from total silage DM. For the whole data set, one index unit corresponded to the default value of 0.10 kg in SDMI. The SDMI index explained proportionally 0.852 of the variation in SDMI with 0.34 kg DM per day residual. The updated SDMI index provides improved basis for the practical dairy cow ration formulation and economic evaluation.  相似文献   
3.
The control of Spodoptera frugiperda is based on synthetic insecticides, so some alternatives are the use of entomopathogenic fungi (EF) and neem extract. The objective of the study was to evaluate in vitro effectiveness of native EF and neem extracts on S. frugiperda larvae. Six EF were identified by DNA sequencing of ITS regions from three EF (Fusarium solani, Metarrhizium robertsii, Nigrospora spherica and Penicillium citrinum). They were evaluated in concentrations of 1 × 10⁸ spores/ mL. In addition, a second bioassay was carried out evaluating only F. solani, M. robertsii and N. sphaerica and the addition of vegetable oil. On the other hand, extraction of secondary metabolites from neem seed (Azadirachta indica) was carried out by performing, mass (g) and solvent volume (mL ethanol and water) combinations, which were subjected to microwaves and ultrasound. Subsequently, these extracts were evaluated in concentrations of 3%, 4% and 5%. A survival analysis was performed for each of the bioassays. With respect to the results of the first bioassay, F. solani obtained a probability of survival of 0.476 on the seventh day, while in the second bioassay, M. robertsii obtained 0.488 survival probability. This suggests that the expected percentage of larvae that stay alive on the sixth day is 48.8%. However, in the evaluation of the neem extract the combination 1:12/70% to 4% caused 84% mortality of larvae. The use of native HE and neem extracts has potential for the control of S. frugiperda.  相似文献   
4.
We studied the induction of salicylates in mature leaves ofSalix myrsinifolia Salisb. (Salicaceae) following severe woundingby a specialist leaf-beetle Phratora vitellinae L. (Chrysomelidae).Levels of individual salicylates and aromatic amino acids andtheir total levels were determined in leaves at different developmentalstages. Induction of salicylates depended on: (1) the individualcompound; (2) the developmental stage of the plant organ; and(3) the genotype of the plant. Induction of salicylates wassystemic: levels of salicylates rose in unwounded young immatureand mature leaves, but no local response was detected in woundedleaves. In addition, there were clear clonal variations in boththe constant and induced levels of salicylates: clones withthe highest levels of salicylates were also most capable ofincreasing this level in response to herbivore attack i.e. notrade-off between constant and induced levels was detected.Furthermore, the levels of three aromatic amino acids, Phe,Tyr and Trp, increased in immature leaves of herbivore-affectedplants, which may indicate induction of enzymes of the shikimatepathway by wounding. The increase in salicylates was suggestedto be a consequence of an increased rate of synthesis ratherthan that of translocation. The induced levels of salicylatesdid not affect the subsequent feeding of highly specializedP. vitellinae. However, the ability to increase levels of salicylatesmay reduce grazing by generalist herbivores which are not ableto tolerate high levels of salicylates. Copyright 2001 Annalsof Botany Company Salix myrsinifolia, dark-leaved willow, Phratora vitellinae, salicylates, phenolic glycosides, herbivory, induced defence  相似文献   
5.
6.
An empirical regression model for the prediction of total dry matter intake (DMI) of dairy cows was developed and compared with four published intake models. The model was constructed to include both animal and dietary factors, which are known to affect DMI. For model development, a data set based on individual cow data from 10 change-over and four continuous milk production studies was collected (n = 1554). Relevant animal (live weight (LW), days in milk (DIM), parity and breed) and dietary (total and concentrate DMI, concentrate composition, forage digestibility and fermentation quality) data were collected. The model factors were limited to those that are available before the diets are fed to animals, that is, standardized energy corrected milk (sECM) yield, LW, DIM and diet quality (total diet DMI index (TDMI index)). As observed ECM yield is a function of both the production potential of the cow and diet quality, ECM yield standardized for DIM, TDMI index and metabolizable protein concentration was used in modelling. In the individual data set, correlation coefficients between sECM and TDMI index or DIM were much weaker (0.16 and 0.03) than corresponding coefficients with observed ECM (0.65 and 0.46), respectively. The model was constructed with a mixed model regression analysis using cow within trial as a random factor. The following mixed model was estimated for DMI prediction: DMI (kg DM/day) = -2.9 (±0.56)+0.258 (±0.011) × sECM (kg/day) + 0.0148 (±0.0009) × LW (kg) -0.0175 (±0.001) × DIM -5.85 (±0.41) × exp (-0.03 × DIM) + 0.09 (±0.002) × TDMI index. The mixed DMI model was evaluated with a treatment mean data set (207 studies, 992 diets), and the following relationship was found: Observed DMI (kg DM/day) = -0.10 (±0.33) + 1.004 (±0.019) × Predicted DMI (kg DM/day) with an adjusted residual mean square error of 0.362 kg/day. Evaluation of the residuals did not result in a significant mean bias or linear slope bias, and random error accounted for proportionally >0.99 of the error. In conclusion, the DMI model developed is considered robust because of low mean prediction error, accurate and precise validation, and numerically small differences in the parameter values of model variables when estimated with mixed or simple regression models. The Cornell Net Carbohydrate and Protein System was the most accurate of the four other published DMI models evaluated using individual or treatment mean data, but in most cases mean and linear slope biases were relatively high, and, interestingly, there were large differences in both mean and linear slope biases between the two data sets.  相似文献   
7.
8.
The aim of this work was to develop an index describing the relative intake of the total diet by dairy cows, and hence the ability to predict intake responses to changes in both forage and concentrate variables. An evaluation of concentrate factors affecting silage dry matter (DM) intake of dairy cows was conducted based on dietary treatment means from milk production experiments. The data were divided into four subsets according to concentrate treatments used within the experiments: the amount of concentrate supplementation (n = 217), protein supplementation (n = 336), carbohydrate composition (n = 114) and fat concentration of the concentrate (n = 29). The data were subjected to mixed-model regression analysis. Increased concentrate DM intake (CDMI) decreased silage DM intake (SDMI) quadratically. The substitution rate (substitution of silage DM for concentrate DM) increased with improved silage intake potential. SDMI increased quadratically with concentrate protein intake, the response being negatively related to the effective protein degradability (EPD) of concentrates. Replacement of starchy concentrate ingredients with fibrous supplements had a small positive effect on silage intake, whereas increased concentrate fat concentration slightly decreased SDMI. The outcome of concentrate factors influencing total DM intake (TDMI) was used to create a relative CDMI index as follows: CDMI index = 100 + 10 × [(CDMI - 0.1629 × CDMI - 0.01882 × CDMI2 - 5.49) + ((0.9474 × CCPI - 0.4965 × CCPI2) - 2.017 × (CEPD - 0.74)) + 0.00225 × (CNDF - 250) - 0.0103 × (40 - Cfat) - 0.00058 × (CDMI - 8.0) × (SDMI index - 100)], where CDMI = concentrate DM intake (kg/day), CCPI = supplementary concentrate CP intake (kg/day; CP>170 g/kg DM), CEPD = concentrate EPD (g/g), CNDF = concentrate NDF concentration (g/kg DM), Cfat = concentrate fat concentration (g/kg DM) and SDMI index is the relative intake potential of silage (Huhtanen, Rinne and Nousiainen 2007. Animal 1, 758-770). TDMI index was calculated as SDMI index + CDMI index - 100 to describe the relative intake potential of the total diet. For the whole data set (n = 943), one TDMI index unit was equivalent to 0.095 kg/day DM intake, i.e. close to the default value of 0.100 kg. The CDMI index explained proportionally 0.88 of the variation in TDMI within a study with a 0.27 kg/day residual mean-square error (n = 616). The corresponding values for the TDMI index were 0.81 and 0.37 kg/day (n = 943), respectively. The residual mean-square errors in cross-validation were marginally higher. The developed TDMI index can be used to estimate the intake responses to diet changes. It provides an improved basis for practical dairy cow ration formulation and economic evaluation.  相似文献   
9.
The assembly of spliceosomal U-rich small nuclear ribonucleoproteins (U snRNPs) is an ATP-dependent process mediated by the coordinated action of the SMN and the PRMT5 complex. Here, we provide evidence that the activity of this assembly machinery is regulated by means of post-translational modification. We show that two main components of the SMN/PRMT5 system, namely the survival motor neuron (SMN) protein (reduced levels thereof causing spinal muscular atrophy) and pICln, are phosphorylated in vivo. Both proteins share a previously unknown motif containing either one or two phosphoserines. Alteration of these residues in SMN (serines 28 and 31) significantly impairs the activity of the SMN complex. Despite the presence of SMN in both the nucleus and cytoplasm, we find that only the latter promotes efficient SMN-mediated U snRNP assembly activity. As cytoplasmic SMN is phosphorylated to a much larger extent, we hypothesize that this modification is a key activator of the SMN complex.  相似文献   
10.
Acyl-CoA thioesterases hydrolyze acyl-CoAs to the corresponding free fatty acid plus coenzyme A. The activity is strongly induced in rat and mouse liver after feeding the animals peroxisome proliferators (PPs). To elucidate the role of these enzymes in lipid metabolism, the authors have cloned the cDNAs corresponding to the inducible cytosolic and mitochondrial type I enzymes (CTE-I and MTE-I), and studied tissue expression and nutritional regulation of expression of the mRNAs in mice. The constitutive expression of both mRNAs was low in liver, with CTE-I expressed mainly in kidney and brown adipose tissue, and MTE-I expressed in brown adipose tissue and heart. As expected, the expression in liver of both the CTE-I and MTE-I mRNAs were strongly induced (>50-fold) by treatment with clofibrate. A similar level of induction was observed by fasting and a time-course study showed that the CTE-I and MTE-I mRNAs were increased already at 6 h after removal of the diet. Refeeding normal chow diet to mice fasted for 24h normalized the mRNA levels with a T 1/2 of about 3–4 h. Feeding mice a fat-free diet further decreased the expression, possibly indicating repression of expression. The strong expression of MTE-I and CTE-I in the heart was increased about 10-fold by fasting. To further characterize these highly regulated enzymes, the authors have cloned the corresponding genes and promoter regions. The structures of the two genes were found to be very similar, consisting of three exons and two introns. Exon-intron borders conform to general consensus sequences, and, especially, the first exon appears to be highly conserved. The promoter regions of both the CTE-I and MTE-I genes contain putative PP response elements, suggesting an involvement of PP-activated receptors in the regulation of these genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号