首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2023年   1篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Kearns–Sayre syndrome is a mitochondrial disorder characterized by the emergence before the age of 20 years of progressive external ophthalmoplegia, pigmentary retinopathy, with other heterogeneous clinical manifestations. Generally, mitochondrial DNA deletions were associated with KSS but the size and position of these deletions differ among patients. This study reported a Tunisian patient with typical features of KSS. Long-range PCR amplification of the mtDNA in different tissues from this patient showed multiple mitochondrial deletions: two novel 9.768 and 7.253 kb deletions spanning respectively nucleotides 6124–15,893 and 8572–15,826 associated with the common 4.977 kb deletion.  相似文献   
2.
Mitochondria are essential for early cardiac development and impaired regulation of mitochondrial function was implicated in congenital heart diseases. We described a newborn girl with hypertrophic cardiomyopathy and profound hearing loss. The mtDNA mutational analysis revealed the presence of known polymorphisms associated to cardiomyopathy and/or hearing loss, and 2 novel heteroplasmic mutations: m.3395A > G (Y30C) occurring in a highly conserved aminoacid of the ND1 gene and the m.4316A > G located in the residue A54 of the tRNAIle gene. These 2 novel variations were absent in 150 controls. All these variants may act synergistically and exert a cumulative negative effect on heart function to generate the cardiomyopathy.  相似文献   
3.
Mitochondria are essential for early cardiac development and impaired regulation of mitochondrial function was implicated in congenital heart diseases. We described a newborn girl with hypertrophic cardiomyopathy and profound hearing loss. The mtDNA mutational analysis revealed the presence of known polymorphisms associated to cardiomyopathy and/or hearing loss, and 2 novel heteroplasmic mutations: m.3395A>G (Y30C) occurring in a highly conserved aminoacid of the ND1 gene and the m.4316A>G located in the residue A54 of the tRNA(Ile) gene. These 2 novel variations were absent in 150 controls. All these variants may act synergistically and exert a cumulative negative effect on heart function to generate the cardiomyopathy.  相似文献   
4.
Rett syndrome (RTT) is a severe neurodevelopmental disorder affecting almost exclusively girls. Rett patients present an apparently normal psychomotor development during the first 6-18 months of life. Thereafter, they show a short period of developmental stagnation followed by a rapid regression in language and motor development. RTT is currently considered as monogenic X-linked dominant disorder due to mutations in the MECP2 gene, encoding the methyl-CpG binding protein 2. The aim of this study was to perform a mutational analysis of the MECP2 gene in a classical Rett patient.The results showed the presence of a novel point mutation c.C1142T (p.P381L) and two deletions at the heterozygous state: a novel deletion c.1075delTTC (p.S359) and a known one c.1157del44 (p.L386Q fs X2) in the C-terminal region of MeCP2.  相似文献   
5.

Background

Misclassification has been shown to have a high prevalence in binary responses in both livestock and human populations. Leaving these errors uncorrected before analyses will have a negative impact on the overall goal of genome-wide association studies (GWAS) including reducing predictive power. A liability threshold model that contemplates misclassification was developed to assess the effects of mis-diagnostic errors on GWAS. Four simulated scenarios of case–control datasets were generated. Each dataset consisted of 2000 individuals and was analyzed with varying odds ratios of the influential SNPs and misclassification rates of 5% and 10%.

Results

Analyses of binary responses subject to misclassification resulted in underestimation of influential SNPs and failed to estimate the true magnitude and direction of the effects. Once the misclassification algorithm was applied there was a 12% to 29% increase in accuracy, and a substantial reduction in bias. The proposed method was able to capture the majority of the most significant SNPs that were not identified in the analysis of the misclassified data. In fact, in one of the simulation scenarios, 33% of the influential SNPs were not identified using the misclassified data, compared with the analysis using the data without misclassification. However, using the proposed method, only 13% were not identified. Furthermore, the proposed method was able to identify with high probability a large portion of the truly misclassified observations.

Conclusions

The proposed model provides a statistical tool to correct or at least attenuate the negative effects of misclassified binary responses in GWAS. Across different levels of misclassification probability as well as odds ratios of significant SNPs, the model proved to be robust. In fact, SNP effects, and misclassification probability were accurately estimated and the truly misclassified observations were identified with high probabilities compared to non-misclassified responses. This study was limited to situations where the misclassification probability was assumed to be the same in cases and controls which is not always the case based on real human disease data. Thus, it is of interest to evaluate the performance of the proposed model in that situation which is the current focus of our research.
  相似文献   
6.
Dravet syndrome (DS), previously known as severe myoclonic epilepsy of infancy, is one of the most severe forms of childhood epilepsy. DS is caused by a mutation in the neuronal voltage-gated sodium-channel alpha-subunit gene (SCN1A). However, 25–30% of patients with DS are negative for the SCN1A mutation screening, suggesting that other molecular mechanisms may account for these disorders. Recently, the first case of DS caused by a mutation in the neuronal voltage-gated sodium-channel beta-subunit gene (SCN1B) was also reported. In this report we aim to make the molecular analysis of the SCN1A and SCN1B genes in two Tunisian patients affected with DS. The SCN1A and SCN1B genes were tested for mutations by direct sequencing. No mutation was revealed in the SCN1A and SCN1B genes by sequencing analyses. On the other hand, 11 known single nucleotide polymorphisms were identified in the SCN1A gene and composed a putative disease-associated haplotype in patients with DS phenotype. One of the two patients with putative disease-associated haplotype in SCN1A had also one known single nucleotide polymorphism in the SCN1B gene. The sequencing analyses of the SCN1A gene revealed the presence of a putative disease-associated haplotype in two patients affected with Dravet syndrome.  相似文献   
7.
Genetic polymorphisms in DNA repair genes might influence the repair activities of the enzymes predisposing individuals to cancer risk. Owing to the presence of these genetic variants, interethnic differences in DNA repair capacity have been observed in various populations. The present study was undertaken to determine the allele and genotype frequencies of two common non-synonymous SNPs, XRCC3 p.Thr241>Met (C?>?T, rs861539) and XPD p.Lys751>Gln (T?>?G, rs13181) in a healthy Tunisian population and to compare them with HapMap ( http://www.hapmap.org/ ) populations. Also, we predicted their eventual functional effect based on bioinformatics tools. The genotypes of 154 healthy and unrelated individuals were determined by PCR-RFLP procedure. Our findings showed a close relatedness with Caucasians from European ancestry which might be explained by the strategic geographic location of Tunisia in the Mediterranean, thus allowing exchanges with Europeans countries. The in silico predictions showed that p.Thr241>Met substitution in XRCC3 protein was predicted as possibly damaging, indicating that it is likely to have functional consequences as well. To the best of our knowledge, this is the first study in this regard in Tunisia. So, these data could provide baseline database and help us to explore the relationship of XRCC3 and XPD polymorphisms with both cancer risk and DNA repair variability in our population.  相似文献   
8.
9.
In the research described here we prepared a novel, modified polystyrene (PS) with iminoether as the complexing agent for Ba2+. Most heavy metals cause environmental, atmospheric pollution.[1–2] They cause consequence for humans health and aquatic life due to their toxicity. They become strongly toxic by mixing with different environmental elements and their removal from contaminated water is very important. The structure of all modified polystyrene such as nitrated polystyrene (PS−NO2), aminated polystyrene (PS−NH2), aminated polystyrene with imidate group (PS−NH−Im) and the complex with barium metal (PS−NH−Im/Ba2+) were analyzed by Fourier transform infrared spectroscopy (FT-IR), and the formation of N-2-Benzimidazolyl iminoether grafted PS was proved. The thermal stability and structure of the polystyrene and modified polystyrene were studied by differential thermal analysis (DTA) and X-ray diffractometry (XRD), respectively. The elemental analysis was used for the determination of the chemical composition of the modified PS. The grafted polystyrene was used in order to adsorb barium from wastewater with an acceptable cost before the wastewater distribution in the environment. The impedance analysis of the polystyrene complex PS−NH−Im/Ba2+ indicated an activated thermal conduction mechanism.The conductivity analysis of the complex with barium metal PS−NH−Im/Ba2+ was studied; the activation energy was deduced from an Arrhenius plot and corresponded to, , suggesting PS−NH−Im/Ba2+ was a proton-type of semiconductor.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号