首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   9篇
  国内免费   1篇
  124篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   1篇
  2012年   1篇
  2011年   9篇
  2010年   2篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   7篇
  1997年   4篇
  1996年   5篇
  1995年   1篇
  1993年   6篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1966年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
1.
Adams  M. L.  Norvell  W. A.  Peverly  J. H.  Philpot  W. D. 《Plant and Soil》1993,155(1):235-238
Leaf reflectance and fluorescence characteristics of soybean (Glycine max cv Bragg) are influenced strongly by Mn availability. This report evaluates the effects of leaflet choice, leaf age, and leaf nodal position on several spectral characteristics. Leaves were obtained from soybeans grown hydroponically under controlled environmental conditions with wide differences in Mn supply. The ratio of constant yield fluorescence (Fo) to variable yield fluorescence (Fv), the ratios of reflectance at 750 nm to 550 nm and that at 650 nm to 550 nm, the position of the "red edge" near 700 nm, and an index of leaf "yellowness" were measured periodically. Increasing leaf age caused increases in the "red edge" and in both reflectance ratios. Leaf "yellowness" and the fluorescence ratio Fo/Fv decreased with leaf age and increased with leaf nodal position, primarily in Mn deficient leaves. Effects arising from leaf choice were smaller than those caused by Mn deficiency.  相似文献   
2.
We investigated the effects of Fe and Cu status of pea (Pisum sativum L.) seedlings on the regulation of the putative root plasma-membrane Fe(III)-chelate reductase that is involved in Fe(III)-chelate reduction and Fe2+ absorption in dicotyledons and nongraminaceous monocotyledons. Additionally, we investigated the ability of this reductase system to reduce Cu(II)-chelates as well as Fe(III)-chelates. Pea seedlings were grown in full nutrient solutions under control, -Fe, and -Cu conditions for up to 18 d. Iron(III) and Cu(II) reductase activity was visualized by placing roots in an agarose gel containing either Fe(III)-EDTA and the Fe(II) chelate, Na2bathophenanthrolinedisulfonic acid (BPDS), for Fe(III) reduction, or CuSO4, Na3citrate, and Na2-2,9-dimethyl-4,7-diphenyl-1, 10-phenanthrolinedisulfonic acid (BCDS) for Cu(II) reduction. Rates of root Fe(III) and Cu(II) reduction were determined via spectrophotometric assay of the Fe(II)-BPDS or the Cu(I)-BCDS chromophore. Reductase activity was induced or stimulated by either Fe deficiency or Cu depletion of the seedlings. Roots from both Fe-deficient and Cu-depleted plants were able to reduce exogenous Cu(II)-chelate as well as Fe(III)-chelate. When this reductase was induced by Fe deficiency, the accumulation of a number of mineral cations (i.e., Cu, Mn, Fe, Mg, and K) in leaves of pea seedlings was significantly increased. We suggest that, in addition to playing a critical role in Fe absorption, this plasma-membrane reductase system also plays a more general role in the regulation of cation absorption by root cells, possibly via the reduction of critical sulfhydryl groups in transport proteins involved in divalent-cation transport (divalent-cation channels?) across the root-cell plasmalemma.  相似文献   
3.
4.
Muscle tissue from 63 Synodontis zambezensis collected bimonthly in 2013 at Flag Boshielo Dam were analysed for metals and metalloids in a desktop human health risk assessment. The Hazard Quotient, based on a weekly meal of 67 g of fish muscle, exceeded the maximum acceptable level of one for lead, cobalt, cadmium, mercury, arsenic and selenium. The concentrations of these elements were higher in 2013 than those recorded in 2009 and 2012 in other fish species from Flag Boshielo Dam and these may pose a long-term health risk if consumed regularly by impoverished rural communities reliant on fish as a source of protein.  相似文献   
5.

Background

A recent epidemiological study demonstrated a reduced risk of lung cancer mortality in breast cancer patients using antiestrogens. These and other data implicate a role for estrogens in lung cancer, particularly nonsmall cell lung cancer (NSCLC). Approximately 61% of human NSCLC tumors express nuclear estrogen receptor β (ERβ); however, the role of ERβ and estrogens in NSCLC is likely to be multifactorial. Here we tested the hypothesis that proteins interacting with ERβ in human lung adenocarcinoma cells that respond proliferatively to estradiol (E2) are distinct from those in non-E2-responsive cells.

Methods

FLAG affinity purification of FLAG-ERβ-interacting proteins was used to isolate ERβ-interacting proteins in whole cell extracts from E2 proliferative H1793 and non-E2-proliferative A549 lung adenocarcinoma cell lines. Following trypsin digestion, proteins were identified using liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS). Proteomic data were analyzed using Ingenuity Pathway Analysis. Select results were confirmed by coimmunoprecipitation.

Results

LC-MS/MS identified 27 non-redundant ERβ-interacting proteins. ERβ-interacting proteins included hsp70, hsp60, vimentin, histones and calmodulin. Ingenuity Pathway Analysis of the ERβ-interacting proteins revealed differences in molecular and functional networks between H1793 and A549 lung adenocarcinoma cells. Coimmunoprecipitation experiments in these and other lung adenocarcinoma cells confirmed that ERβ and EGFR interact in a gender-dependent manner and in response to E2 or EGF. BRCA1 interacted with ERβ in A549 cell lines and in human lung adenocarcinoma tumors, but not normal lung tissue.

Conclusion

Our results identify specific differences in ERβ-interacting proteins in lung adenocarcinoma cells corresponding to ligand-dependent differences in estrogenic responses.
  相似文献   
6.

Background

Peripheral artery disease (PAD) is an important global health problem and contributes to notable proportion of morbidity and mortality. This particular manifestation of systemic atherosclerosis is largely under diagnosed and undertreated. For sustainable preventive strategies in a country, it is mandatory to identify country-specific risk factors. We intended to assess the risk factors of PAD among adults aged 40–74 years.

Methods

This case control study was conducted in 2012–2013 in Sri Lanka. Seventy-nine cases and 158 controls in the age group of 40–74 years were selected for the study in order to have case to control ratio 1:2. The criterion for selecting cases and control was based on Ankle brachial pressure index (ABPI). Cases were selected from those who had ABPI 0.85 or less (ABPI ≤0.85) in either lower limb. Controls were selected from those ABPI score between 1.18 and 1.28 in both lower limbs. Only newly identified individuals with PAD were selected as cases. Controls were selected from the same geographical location and within the 5 year age group as cases.

Results

The history of diabetes mellitus more than 10 years (OR 5.8, 95% CI 2.2–14.2), history of dyslipidemia for more than 10 years (OR 4.9, 95% CI 2.1–16.2), history of hypertension for more than 10 years (OR 3.8, 95% CI 1.8–12.7) and smoking (OR 2.9, 95% CI 1.2–6.9), elevated HsCRP (OR 3.7, 95% CI 1.2–12.0) and hyperhomocysteinemia (OR 3.0, 95% CI 1.1–8.1) were revealed as country specific significant risk factor of PAD.

Conclusions

Diabetes mellitus, hypertension, dyslipidemia, smoking as well as elevated homocysteine and HsCRP found as risk factors of PAD. Longer the duration or higher level exposure to these risk factors has increased the risk of PAD. These findings emphasis the need for routine screening of PAD among patients with the identified risk factors.
  相似文献   
7.
Induction of ferric reductase activity in dicots and nongrass monocots is a well-recognized response to Fe deficiency. Recent evidence has shown that Cu deficiency also induces plasma membrane Fe reduction. In this study we investigated whether other nutrient deficiencies could also induce ferric reductase activity in roots of pea (Pisum sativum L. cv Sparkle) seedlings. Of the nutrient deficiencies tested (K, Mg, Ca, Mn, Zn, Fe, and Cu), only Cu and Fe deficiencies elicited a response. Cu deficiency induced an activity intermediate between Fe-deficient and control plant activities. To ascertain whether the same reductase is induced by Fe and Cu deficiency, concentration- and pH-dependent kinetics of root ferric reduction were compared in plants grown under control, -Fe, and -Cu conditions. Additionally, rhizosphere acidification, another process induced by Fe deficiency, was quantified in pea seedlings grown under the three regimes. Control, Fe-deficient, and Cu-deficient plants exhibited no major differences in pH optima or Km for the kinetics of ferric reduction. However, the Vmax for ferric reduction was dramatically influenced by plant nutrient status, increasing 16- to 38-fold under Fe deficiency and 1.5- to 4-fold under Cu deficiency, compared with that of control plants. These results are consistent with a model in which varying amounts of the same enzyme are deployed on the plasma membrane in response to plant Fe or Cu status. Rhizosphere acidification rates in the Cu-deficient plants were similarly intermediate between those of the control and Fe-deficient plants. These results suggest that Cu deficiency induces the same responses induced by Fe deficiency in peas.  相似文献   
8.
Welch  R.M.  Hart  J.J.  Norvell  W.A.  Sullivan  L.A.  Kochian  L.V. 《Plant and Soil》1999,208(2):243-250
Cd accumulation in durum wheat presents a potential health risk to consumers. In an effort to understand the physiological mechanisms involved with Cd accumulation, this study examined the effects of Zn on Cd root uptake and phloem translocation in a split– root system. Durum wheat seedlings were grown in chelate-buffered nutrient solution with intact root systems divided into two sections. Each root section grew in a separate 1 l pot, one of which contained 0.2 μM CdSO4. In addition, each two-pot system contained ZnSO4 in the following combinations (in μm) (for -cd root system: +cd root system): 1:1, 1:10, 10:1,10:10, 1:19, and 19:1. Harvested plant material was analyzed for Cd and Zn. In addition, rates of Cd and Zn net uptake, translocation to the shoot, and root export (translocation from one root segment to the other) between days 8 and 22 were calculated. Results show that Zn was not translocated from one root section to its connected root section. Uptake rates of Cd increased as solution Zn concentrations increased. Cd translocation from one root section to the other decreased significantly when the Zn concentration in either pot was greater than 1 μM. These results show the potential of Zn to inhibit movement of Cd via the phloem, and suggests that providing adequate Zn levels may limit phloem loading of Cd into wheat grain. Increasing the rhizosphere activity of Zn2+ in Cd-containing soils may therefore result in reduced Cd accumulation in grain even while net Cd uptake is slightly enhanced. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
9.
Here, we examined the effectiveness of two approaches for reducing cadmium (Cd) accumulation in durum wheat (Triticum turgidum L. var durum) grain: the application of supplemental zinc (Zn), and the use of cultivars exhibiting reduced grain Cd concentrations. Two durum wheat near-isogenic lines (NIL) that differ in grain Cd accumulation were grown to maturity in solution culture containing a chelating agent to buffer the free activities of Zn and Cd at levels approximating those of field conditions. The low Cd accumulating (L-Cd) isoline had Cd concentrations, in grains and shoot parts, which were 60-70% lower than those of the high Cd accumulating (H-Cd) isoline. Increasing the Zn activities in the nutrient solution from deficient to sufficient levels reduced the concentration of Cd in grains and vegetative shoot parts of both isolines. The results suggest that supplemental Zn reduces Cd tissue concentrations by inhibiting Cd uptake into roots. Cd partitioning patterns between roots and shoots and between spike components suggest that the physiological basis for the low Cd trait is related to the compartmentation or symplasmic translocation of Cd.  相似文献   
10.
Field studies have shown that the addition of Zn to Cd-containing soils can help reduce accumulation of Cd in crop plants. To understand the mechanisms involved, this study used 109Cd and 65Zn to examine the transport interactions of Zn and Cd at the root cell plasma membrane of bread wheat ( Triticum aestivum L.) and durum wheat ( Triticum turgidum L. var. durum ). Results showed that Cd2+ uptake was inhibited by Zn2+ and Zn2+ uptake was inhibited by Cd2+. Concentration-dependent uptake of both Cd2+ and Zn2+ consisted of a combination of linear binding by cell walls and saturable, Michaelis-Menten influx across the plasma membrane. Saturable influx data from experiments with and without 10 µm concentrations of the corresponding inhibiting ion were converted to double reciprocal plots. The results revealed a competitive interaction between Cd2+ and Zn2+, confirming that Cd2+ and Zn2+ share a common transport system at the root cell plasma membrane in both bread and durum wheat. The study suggests that breeding or agronomic strategies that aim to decrease Cd uptake or increase Zn uptake must take into account the potential accompanying change in transport of the competing ion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号