首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6360篇
  免费   611篇
  国内免费   2篇
  2021年   66篇
  2018年   60篇
  2017年   55篇
  2016年   94篇
  2015年   172篇
  2014年   160篇
  2013年   234篇
  2012年   290篇
  2011年   290篇
  2010年   174篇
  2009年   176篇
  2008年   260篇
  2007年   264篇
  2006年   262篇
  2005年   229篇
  2004年   223篇
  2003年   223篇
  2002年   229篇
  2001年   100篇
  2000年   86篇
  1999年   77篇
  1998年   92篇
  1997年   47篇
  1996年   54篇
  1993年   61篇
  1992年   86篇
  1991年   95篇
  1990年   81篇
  1989年   91篇
  1988年   73篇
  1987年   83篇
  1986年   88篇
  1985年   92篇
  1984年   90篇
  1983年   81篇
  1982年   76篇
  1981年   84篇
  1980年   95篇
  1979年   97篇
  1978年   102篇
  1977年   79篇
  1976年   94篇
  1975年   62篇
  1974年   75篇
  1973年   61篇
  1972年   51篇
  1971年   50篇
  1970年   51篇
  1968年   64篇
  1967年   48篇
排序方式: 共有6973条查询结果,搜索用时 15 毫秒
1.
2.
We present a time‐calibrated phylogeny of the charismatic green lacewings (Neuroptera: Chrysopidae). Previous phylogenetic studies on the family using DNA sequences have suffered from sparse taxon sampling and/or limited amounts of data. Here we combine all available previously published DNA sequence data and add to it new DNA sequences generated for this study. We analysed these data in a supermatrix using Bayesian and maximum likelihood methods and provide a phylogenetic hypothesis for the family that recovers strong support for the monophyly of all subfamilies and resolves relationships among a large proportion of chrysopine genera. Chrysopinae tribes Leucochrysini and Belonopterygini were recovered as monophyletic sister clades, while the species‐rich tribe Chrysopini was rendered paraphyletic by Ankylopterygini. Relationships among the subfamilies were resolved, although with relatively low statistical support, and the topology varied based on the method of analysis. Greatest support was found for Apochrysinae as sister to Nothochrysinae and Chrysopinae, which is in contrast to traditional concepts that place Nothochrysinae as sister to the rest of the family. Divergence estimates suggest that the stem groups to the various subfamilies diverged during the Triassic‐Jurassic, and that stem groups of the chrysopine tribes diverged during the Cretaceous.  相似文献   
3.
Interest in cross-disciplinary research knowledge interchange runs high. Review processes at funding agencies, such as the U.S. National Science Foundation, consider plans to disseminate research across disciplinary bounds. Publication in the leading multidisciplinary journals, Nature and Science, may signify the epitome of successful interdisciplinary integration of research knowledge and cross-disciplinary dissemination of findings. But how interdisciplinary are they? The journals are multidisciplinary, but do the individual articles themselves draw upon multiple fields of knowledge and does their influence span disciplines? This research compares articles in three fields (Cell Biology, Physical Chemistry, and Cognitive Science) published in a leading disciplinary journal in each field to those published in Nature and Science. We find comparable degrees of interdisciplinary integration and only modest differences in cross-disciplinary diffusion. That said, though the rate of out-of-field diffusion might be comparable, the sheer reach of Nature and Science, indicated by their potent Journal Impact Factors, means that the diffusion of knowledge therein can far exceed that of leading disciplinary journals in some fields (such as Physical Chemistry and Cognitive Science in our samples).  相似文献   
4.
The in vivo effects of dexamethasone administration on liver and extrahepatic tissue carnitine concentrations were assessed in 48-h-starved rats. In heart and kidney, but not in liver, dexamethasone significantly increased total carnitine concentration. Acute (2.5 h) treatment with 2-tetradecylglycidate (TDG), a specific inhibitor of carnitine palmitoyl transferase 1, not only increased total hepatic carnitine concentrations, but also permitted an effect of dexamethasone (a further increase in hepatic carnitine concentration). The results are discussed in terms of acute (substrate-mediated) and chronic (hormonal) control of carnitine turnover.  相似文献   
5.
6.
7.
  1. Download : Download high-res image (147KB)
  2. Download : Download full-size image
Highlights
  • •Sufficient tumor tissues are often unavailable large HLA peptidome discovery.
  • •Using patient derived xenograft (PDX) tumors can overcome this limitation.
  • •The large PDX HLA peptidomes expand significantly those of the original biopsies.
  • •The HLA peptidomes of the PDX tumors included many tumor antigens.
  相似文献   
8.
9.
10.
Growth of a human leukemic T-cell line (CEM C7) in 10(-6) M dexamethasone results in inhibition of growth and rapid loss of cell viability after a delay of approximately 18 to 24 hours. Analysis of dexamethasone-treated cells by flow-microfluorometry showed that they were arrested in the G1 phase of the cell cycle. Loss of cell viability began at the same time as G1 accumulation was first detectable, and 20% of all cells were found to be blocked in G1 at this time suggesting that loss of viability and G1 arrest were coincident events. Half-maximal and maximal effects on both viability and G1 arrest after 48 hours in steroid were nearly identical with respect to steroid concentration and corresponded to half-maximal and full occupancy of glucocorticoid specific receptor by hormone, consistent with a glucocorticoid receptor mediated mechanism for both phenomena. Most non-viable cells were arrested in G1, and accumulation of cells in G1 was irreversible; removal of steroid in the presence of colcemid did not result in a decreased fraction of G1 cells. Furthermore, dexamethasone treatment did not protect cells against the effects of 33258 Hoechst-amplified killing of bromodeoxyuridine substituted cells exposed to light. These results show that dexamethasone arrests these leukemic cells in G1 and strongly suggest that dexamethasone-treated cells are killed upon entry into G1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号