首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2014年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  1987年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Pyridoxine-5-P oxidase, the flavoprotein involved in the oxidation of pyridoxamine-5-P and pyridoxine-5-P to pyridoxal-5-P, has been isolated and purified to homogeneity using sheep brain tissues. Inactivation of the oxidase by bis-pyridoxal-5-P results in binding of the inhibitor to specific lysyl residues. After NaBH4 reduction of the inactivated enzyme, it was found that 1 P-pyridoxyl-pyridoxine-P residue was incorporated per enzyme dimer. After trypsin digestion of the bis-PLP modified enzyme, only one peptide absorbing at 320 nm, was separated by reverse-phase high performance liquid chromatography. The amino acid sequence of the labeled peptide was determined by automated Edman degradation. The observations reported in this paper are relevant to the mechanisms underlying the regulation of the catalytic function of pyridoxines-5-P oxidase by the product pyridoxal-5-P. It is postulated that the catalytic function of the oxidase is modulated by binding of pyridoxal-5-P to a specific lysyl residue of the dimeric structure of the protein.  相似文献   
2.
Mutations in the parkin gene, which encodes a ubiquitin ligase, are currently recognized as the main contributor to familial forms of Parkinson's disease (PD). A simple assumption about the effects of PD-linked mutations in parkin is that they impair or ablate the enzyme activity. However, a number of recent studies, including ours, have indicated that many disease-linked point mutants of parkin retain substantial catalytic activity. To understand how the plethora of mutations on parkin contribute to its dysfunction, we have conducted a systematic analysis of a significant number of parkin point mutants (22 in total), which represent the majority of parkin missense/nonsense mutations reported to date. We found that more than half of these mutations, including many located outside of the parkin RING fingers, produce alteration in the solubility of parkin which influences its detergent extraction property. This mutation-mediated alteration in parkin solubility is also associated with its propensity to form intracellular, aggresome-like, protein aggregates. However, they do not represent sites where parkin substrates become sequestered. As protein aggregation sequesters the functional forms away from their normal sites of action, our results suggest that alterations in parkin solubility and intracellular localization may underlie the molecular basis of the loss of function caused by several of its mutations.  相似文献   
3.
Loss of parkin function is a predominant cause of familial Parkinsonism. Emerging evidence also suggests that parkin expression variability may confer a risk for sporadic Parkinson disease. We have recently demonstrated that a wide variety of Parkinson disease-linked stressors, including dopamine (DA), induce parkin solubility alterations and promote its aggregation within the cell, a phenomenon that may underlie the progressive susceptibility of the brain to degeneration. The vulnerability of parkin to stress-induced modification is likely due to its abundance of cysteine residues. Here, we performed a comprehensive mutational analysis and demonstrate that Cys residues residing both within and outside of the RING-IBR (in between RING fingers)-RING domain of parkin are important in maintaining its solubility. The majority of these Cys residues are highly conserved in parkin across different species and potentially fulfil important structural roles. Further, we found that both parkin and HHARI (human homologue of Drosophila ariadne), another RING-IBR-RING-type ubiquitin ligase, are comparably more susceptible to solubility alterations induced by oxidative and nitrosative stress when compared with other non-RING-IBR-RING Cys-containing enzymes. However, parkin appears to be uniquely sensitive to DA-mediated stress, the specificity of which is likely due to DA modification of 2 Cys residues on parkin (Cys-268 and Cys-323) that are distinct from other RING-IBR-RING members.  相似文献   
4.
5.
Hypoxia promotes stem cell maintenance and tumor progression, but it remains unclear how it regulates long-term adaptation toward these processes. We reveal a striking downregulation of the hypoxia-inducible histone H3 lysine 9 (H3K9) demethylase JMJD1A as a hallmark of clinical human germ cell-derived tumors, such as seminomas, yolk sac tumors, and embryonal carcinomas. Jmjd1a was not essential for stem cell self-renewal but played a crucial role as a tumor suppressor in opposition to the hypoxia-regulated oncogenic H3K9 methyltransferase G9a. Importantly, loss of Jmjd1a resulted in increased tumor growth, whereas loss of G9a produced smaller tumors. Pharmacological inhibition of G9a also resulted in attenuation of tumor growth, offering a novel therapeutic strategy for germ cell-derived tumors. Finally, Jmjd1a and G9a drive mutually opposing expression of the antiangiogenic factor genes Robo4, Igfbp4, Notch4, and Tfpi accompanied by changes in H3K9 methylation status. Thus, we demonstrate a novel mechanistic link whereby hypoxia-regulated epigenetic changes are instrumental for the control of tumor growth through coordinated dysregulation of antiangiogenic gene expression.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号