首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   3篇
  2020年   1篇
  2019年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   5篇
  2009年   2篇
  2008年   6篇
  2007年   7篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  1985年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
2.
This video describes the fabrication and use of a microfluidic device to culture central nervous system (CNS) neurons. This device is compatible with live-cell optical microscopy (DIC and phase contrast), as well as confocal and two photon microscopy approaches. This method uses precision-molded polymer parts to create miniature multi-compartment cell culture with fluidic isolation. The compartments are made of tiny channels with dimensions that are large enough to culture neurons in well-controlled fluidic microenvironments. Neurons can be cultured for 2-3 weeks within the device, after which they can be fixed and stained for immunocytochemistry. Axonal and somal compartments can be maintained fluidically isolated from each other by using a small hydrostatic pressure difference; this feature can be used to localize soluble insults to one compartment for up to 20 h after each medium change. Fluidic isolation enables collection of pure axonal fraction and biochemical analysis by PCR. The microfluidic device provides a highly adaptable platform for neuroscience research and may find applications in modeling CNS injury and neurodegeneration.  相似文献   
3.
Although a wealth of knowledge about chemotaxis has accumulated in the past 40 years, these studies have been hampered by the inability of researchers to generate simple linear gradients instantaneously and to maintain them at steady state. Here we describe a device microfabricated by soft lithography and consisting of a network of microfluidic channels that can generate spatially and temporally controlled gradients of chemotactic factors. When human neutrophils are positioned within a microchannel, their migration in simple and complex interleukin-8 (IL-8) gradients can be tested. The cells exhibit strong directional migration toward increasing concentrations of IL-8 in linear gradients. Neutrophil migration halts abruptly when cells encounter a sudden drop in the chemoattractant concentration to zero ("cliff" gradient). When neutrophils are challenged with a gradual increase and decrease in chemoattractant ("hill" gradient), however, the cells traverse the crest of maximum concentration and migrate further before reversing direction. The technique described in this paper provides a robust method to investigate migratory cells under a variety of conditions not accessible to study by earlier techniques.  相似文献   
4.
5.
Besides coumarin, nobiletin, lucidin dimethyl ether and 5,6,7,3′,4′-pentamethoxyflavone, two new highly oxygenated flavones were isolated from Eupatorium coelestinum. Their structures were determined by spectroscopic methods and alkaline degradations as 5,6,7,8,3′,4′,5′ -heptamethoxyflavone and 5,6,7,8,5′-pentamethoxy-3′,4′-methylenedioxyflavone.  相似文献   
6.
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system (CNS). Neither the antigenic target(s) nor the cell population(s) responsible for CNS tissue destruction in MS have been fully defined. The objective of this study was to simultaneously determine the antigen (Ag)-specificity and phenotype of un-manipulated intrathecal CD4+ and CD8+ T cells of patients with relapsing-remitting and progressive MS compared to subjects with other inflammatory neurological diseases. We applied a novel Ag-recognition assay based on co-cultures of freshly obtained cerebrospinal fluid T cells and autologous dendritic cells pre-loaded with complex candidate Ag''s. We observed comparably low T cell responses to complex auto-Ag''s including human myelin, brain homogenate, and cell lysates of apoptotically modified oligodendroglial and neuronal cells in all cohorts and both compartments. Conversely, we detected a strong intrathecal enrichment of Epstein-Barr virus- and human herpes virus 6-specific (but not cytomegalovirus-specific) reactivities of the Th1-phenotype throughout all patients. Qualitatively, the intrathecal enrichment of herpes virus reactivities was more pronounced in MS patients. This enrichment was completely reversed by long-term treatment with the IL-2 modulating antibody daclizumab, which strongly inhibits MS disease activity. Finally, we observed a striking discrepancy between diminished intrathecal T cell proliferation and enhanced cytokine production of herpes virus-specific T cells among progressive MS patients, consistent with the phenotype of terminally differentiated cells. The data suggest that intrathecal administration of novel therapeutic agents targeting immune cells outside of the proliferation cycle may be necessary to effectively eliminate intrathecal inflammation in progressive MS.  相似文献   
7.
Thirteen flavonoids, including three new compounds, were isolated from Gutierrezia grandis. The structures of the new compounds were 3,5,7,3′,4′-pentahydroxy-6,8-dimethoxyflavone, 5,7,3′-trihydroxy-3,6,8,4′,5′-pentamethoxyflavone and 5,7,3′,5′-tetrahydroxy-3,6,8,4′-tetramethoxyflavone 3′-O-glucoside.  相似文献   
8.
In this video, we demonstrate how to use the neuron microfluidic device without plasma bonding. In some cases it may be desirable to reversibly bond devices to the Corning No. 1 cover glass. This could be due, perhaps, to a plasma cleaner not being available. In other instances, it may be desirable to remove the device from the glass after the culturing of neurons for certain types of microscopy or for immunostaining, though it is not necessary to remove the device for immunostaining since the neurons can be stained in the device. Some researchers, however, still prefer to remove the device. In this case, reversible bonding of the device to the cover glass makes that possible. There are some disadvantages to non-plasma bonding of the devices in that not as tight of a seal is formed. In some cases axons may grow under the grooves rather than through them. Also, because the glass and PDMS are hydrophobic, liquids do not readily enter the device making it necessary at times to force media and other reagents into the device. Liquids will enter the device via capillary action, but it takes significantly longer as compared to devices that have been plasma bonded. The plasma cleaner creates temporary hydrophilic charges on the glass and device that facilitate the flow of liquids through the device after bonding within seconds. For non-plasma bound devices, liquid flow through the devices takes several minutes. It is also important to note that the devices to be used with non-plasma bonding need to be sterilized first, whereas plasma treated devices do not need to be sterilized prior to use because the plasma cleaner will sterilize them.  相似文献   
9.
The fabrication and operation of a gradient-generating microfluidic device for studying cellular behavior is described. A microfluidic platform is an enabling experimental tool, because it can precisely manipulate fluid flows, enable high-throughput experiments, and generate stable soluble concentration gradients. Compared to conventional gradient generators, poly(dimethylsiloxane) (PDMS)-based microfluidic devices can generate stable concentration gradients of growth factors with well-defined profiles. Here, we developed simple gradient-generating microfluidic devices with three separate inlets. Three microchannels combined into one microchannel to generate concentration gradients. The stability and shape of growth factor gradients were confirmed by fluorescein isothyiocyanate (FITC)-dextran with a molecular weight similar to epidermal growth factor (EGF). Using this microfluidic device, we demonstrated that fibroblasts exposed to concentration gradients of EGF migrated toward higher concentrations. The directional orientation of cell migration and motility of migrating cells were quantitatively assessed by cell tracking analysis. Thus, this gradient-generating microfluidic device might be useful for studying and analyzing the behavior of migrating cells.  相似文献   
10.
Transient versus sustained ERK MAP kinase (MAPK) activation dynamics induce proliferation versus differentiation in response to epidermal (EGF) or nerve (NGF) growth factors in PC‐12 cells. Duration of ERK activation has therefore been proposed to specify cell fate decisions. Using a biosensor to measure ERK activation dynamics in single living cells reveals that sustained EGF/NGF application leads to a heterogeneous mix of transient and sustained ERK activation dynamics in distinct cells of the population, different than the population average. EGF biases toward transient, while NGF biases toward sustained ERK activation responses. In contrast, pulsed growth factor application can repeatedly and homogeneously trigger ERK activity transients across the cell population. These datasets enable mathematical modeling to reveal salient features inherent to the MAPK network. Ultimately, this predicts pulsed growth factor stimulation regimes that can bypass the typical feedback activation to rewire the system toward cell differentiation irrespective of growth factor identity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号