首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The retinitis pigmentosa GTPase regulator (RPGR) and nephrocystin-4 (NPHP4) comprise two key partners of the assembly complex of the RPGR-interacting protein 1 (RPGRIP1). Mutations in RPGR and NPHP4 are linked to severe multisystemic diseases with strong retinal involvement of photoreceptor neurons, whereas those in RPGRIP1 cause the fulminant photoreceptor dystrophy, Leber congenital amaurosis (LCA). Further, mutations in Rpgrip1 and Nphp4 suppress the elaboration of the outer segment compartment of photoreceptor neurons by elusive mechanisms, the understanding of which has critical implications in uncovering the pathogenesis of syndromic retinal dystrophies. Here we show RPGRIP1 localizes to the photoreceptor connecting cilium (CC) distally to the centriole/basal body marker, centrin-2 and the ciliary marker, acetylated-α-tubulin. NPHP4 abuts proximally RPGRIP1, RPGR and the serologically defined colon cancer antigen-8 (SDCCAG8), a protein thought to partake in the RPGRIP1 interactome and implicated also in retinal–renal ciliopathies. Ultrastructurally, RPGRIP1 localizes exclusively throughout the photoreceptor CC and Rpgrip1nmf247 photoreceptors present shorter cilia with a ruffled membrane. Strikingly, Rpgrip1nmf247 mice without RPGRIP1 expression lack NPHP4 and RPGR in photoreceptor cilia, whereas the SDCCAG8 and acetylated-α-tubulin ciliary localizations are strongly decreased, even though the NPHP4 and SDCCAG8 expression levels are unaffected and those of acetylated-α-tubulin and γ-tubulin are upregulated. Further, RPGRIP1 loss in photoreceptors shifts the subcellular partitioning of SDCCAG8 and NPHP4 to the membrane fraction associated to the endoplasmic reticulum. Conversely, the ciliary localization of these proteins is unaffected in glomeruli or tubular kidney cells of Rpgrip1nmf247, but NPHP4 is downregulated developmentally and selectively in kidney cortex. Hence, RPGRIP1 presents cell type-dependent pathological effects crucial to the ciliary targeting and subcellular partitioning of NPHP4, RPGR and SDCCAG8, and acetylation of ciliary α-tubulin or its ciliary targeting, selectively in photoreceptors, but not kidney cells, and these pathological effects underlie photoreceptor degeneration and LCA.  相似文献   
2.
The nervous cells in the brain and the peripheral nerves are isolated from the external environment by the blood-brain, blood-cerebrospinal fluid and blood-nerve barriers. The glucose transporter GLUT1 mediates the specific transfer of glucose across these barriers. The olfactory system is unique in that its sensory cells, olfactory receptor neurons, are embedded in the nasal olfactory epithelium and send their axons directly to the olfactory bulb of the brain. Only the apical parts of the olfactory receptor neurons are exposed to the lumen, and these serve as sensors for smell. Immunohistochemical examination showed that the tight junction protein occludin was present in the junctions of the olfactory epithelium. Endothelial cells in the blood vessels in the lamina propria of the olfactory mucosa were also positive for occludin. These observations suggest that the olfactory system is guarded from both the external environment and the blood. GLUT1 was abundant in these occludin-positive endothelial cells, suggesting that GLUT1 may serve in nourishing the cells of the olfactory system. Taken together, GLUT1 and occludin may serve as part of the machinery for the specific transfer of glucose in the olfactory system while preventing the non-specific entry of substances.  相似文献   
3.
Prolonged light exposure is a determinant factor in inducing neurodegeneration of photoreceptors by apoptosis. Yet, the molecular bases of the pathways and components triggering this cell death event are elusive. Here, we reveal a prominent age-dependent increase in the susceptibility of photoreceptor neurons to undergo apoptosis under light in a mouse model. This is accompanied by light-induced subcellular changes of photoreceptors, such as dilation of the disks at the tip of the outer segments, prominent vesiculation of nascent disks, and autophagy of mitochondria into large multilamellar bodies. Notably, haploinsufficiency of Ran-binding protein-2 (RanBP2) suppresses apoptosis and most facets of membrane dysgenesis observed with age upon light-elicited stress. RanBP2 haploinsufficiency promotes decreased levels of free fatty acids in the retina independent of light exposure and turns the mice refractory to weight gain on a high-fat diet, whereas light promotes an increase in hydrogen peroxide regardless of the genotype. These studies demonstrate the presence of age-dependent and RanBP2-mediated pathways modulating membrane biogenesis of the outer segments and light-elicited neurodegeneration of photoreceptors. Furthermore, the findings support a mechanism whereby the RanBP2-dependent production of free fatty acids, metabolites thereof or the modulation of a cofactor dependent on any of these, promote apoptosis of photoreceptors in concert with the light-stimulated production of reactive oxygen species.  相似文献   
4.
Phosphorylation of rhodopsin by G protein-coupled receptor kinase 1 (GRK1, or rhodopsin kinase) is critical for the deactivation of the phototransduction cascade in vertebrate photoreceptors. Based on our previous studies in vitro, we predicted that Ser(21) in GRK1 would be phosphorylated by cAMP-dependent protein kinase (PKA) in vivo. Here, we report that dark-adapted, wild-type mice demonstrate significantly elevated levels of phosphorylated GRK1 compared with light-adapted animals. Based on comparatively slow half-times for phosphorylation and dephosphorylation, phosphorylation of GRK1 by PKA is likely to be involved in light and dark adaptation. In mice missing the gene for adenylyl cyclase type 1, levels of phosphorylated GRK1 were low in retinas from both dark- and light-adapted animals. These data are consistent with reports that cAMP levels are high in the dark and low in the light and also indicate that cAMP generated by adenylyl cyclase type 1 is required for phosphorylation of GRK1 on Ser(21). Surprisingly, dephosphorylation was induced by light in mice missing the rod transducin α-subunit. This result indicates that phototransduction does not play a direct role in the light-dependent dephosphorylation of GRK1.  相似文献   
5.
 The facilitative glucose transporter GLUT1 is abundant in cells of the blood-ocular barrier and serves as a glucose transport mechanism in the barrier. To see the relationship between the glucose transfer function and junctional proteins in the barrier, we examined the localization of GLUT1 and the tight junction proteins, occludin and ZO-1, in the mouse eye. Their localization in the retina, ciliary body, and iris was visualized by double-immunofluorescence microscopy and immunogold electron microscopy. Occludin and ZO-1 were colocalized at tight junctions of the cells of the barrier: retinal pigment epithelial cells, non-pigmented epithelial cells of the ciliary body, and endothelial cells of GLUT1-positive blood vessels. Occludin was restricted to these cells of the barrier. ZO-1 was found, in addition, in sites not functioning as a barrier: the outer limiting membrane in the retina, in the cell border between pigmented and non-pigmented epithelial cells in the ciliary body, and GLUT1-negative blood vessels. These observations show that localization of occludin is restricted to tight junctions of cells of the barrier, whereas ZO-1 is more widely distributed. Accepted: 7 September 1998  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号