首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2021年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
排序方式: 共有8条查询结果,搜索用时 296 毫秒
1
1.
Biomechanics and Modeling in Mechanobiology - Objective of the work is to investigate stress and deformation that conrneal tissue and donor graft undergo during endothelial keratoplasty. In order...  相似文献   
2.

In this paper we introduce a novel method for prescribing terminal boundary conditions in one-dimensional arterial flow networks. This is carried out by coupling the terminal arterial vessel with a poro-elastic tube, representing the flow resistance offered by microcirculation. The performance of the proposed porous media-based model has been investigated through several different numerical examples. First, we investigate model parameters that have a profound influence on the flow and pressure distributions of the system. The simulation results have been compared against the waveforms generated by three elements (RCR) Windkessel model. The proposed model is also integrated into a realistic arterial tree, and the results obtained have been compared against experimental data at different locations of the network. The accuracy and simplicity of the proposed model demonstrates that it can be an excellent alternative for the existing models.

  相似文献   
3.

In the present work, we propose an FFT-based method for solving blood flow equations in an arterial network with variable properties and geometrical changes. An essential advantage of this approach is in correctly accounting for the vessel skin friction through the use of Womersley solution. To incorporate nonlinear effects, a novel approximation method is proposed to enable calculation of nonlinear corrections. Unlike similar methods available in the literature, the set of algebraic equations required for every harmonic is constructed automatically. The result is a generalized, robust and fast method to accurately capture the increasing pulse wave velocity downstream as well as steepening of the pulse front. The proposed method is shown to be appropriate for incorporating correct convection and diffusion coefficients. We show that the proposed method is fast and accurate and it can be an effective tool for 1D modelling of blood flow in human arterial networks.

  相似文献   
4.
Quasi-one-dimensional microtubules (MTs) in cells enjoy high axial rigidity but large transverse flexibility due to the inter-protofilament (PF) sliding. This study aims to explore the structure–property relation for MTs and examine the relevance of the beam theories to their unique features. A molecular structural mechanics (MSM) model was used to identify the origin of the inter-PF sliding and its role in bending and vibration of MTs. The beam models were then fitted to the MSM to reveal how they cope with the distinct mechanical responses induced by the inter-PF sliding. Clear evidence showed that the inter-PF sliding is due to the soft inter-PF bonds and leads to the length-dependent bending stiffness. The Euler beam theory is found to adequately describe MT deformation when the inter-PF sliding is largely prohibited. Nevertheless, neither shear deformation nor the nonlocal effect considered in the ‘more accurate’ beam theories can fully capture the effect of the inter-PF sliding. This reflects the distinct deformation mechanisms between an MT and its equivalent continuous body.  相似文献   
5.
The influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are carried out on fusiform-type aneurysm models, and a comparison of results with those from a one-dimensional fluid–structure interaction model shows close agreement. Further mathematical analysis of these results allows the definition of several indicators that characterize the impact of an aneurysm on waveforms. These indicators are then further studied in a computational model of a systemic blood flow network. This demonstrates the methods’ ability to detect the location and severity of an aortic aneurysm through the analysis of flow waveforms in clinically accessible locations. Therefore, the proposed methodology shows a high potential for non-invasive aneurysm detectors/monitors.  相似文献   
6.

An exponential rise in patient data provides an excellent opportunity to improve the existing health care infrastructure. In the present work, a method to enable cardiovascular digital twin is proposed using inverse analysis. Conventionally, accurate analytical solutions for inverse analysis in linear problems have been proposed and used. However, these methods fail or are not efficient for nonlinear systems, such as blood flow in the cardiovascular system (systemic circulation) that involves high degree of nonlinearity. To address this, a methodology for inverse analysis using recurrent neural network for the cardiovascular system is proposed in this work, using a virtual patient database. Blood pressure waveforms in various vessels of the body are inversely calculated with the help of long short-term memory (LSTM) cells by inputting pressure waveforms from three non-invasively accessible blood vessels (carotid, femoral and brachial arteries). The inverse analysis system built this way is applied to the detection of abdominal aortic aneurysm (AAA) and its severity using neural networks.

  相似文献   
7.
In the present work, an elaborate one-dimensional thermofluid model for a human body is presented. By contrast to the existing pure conduction-/perfusion-based models, the proposed methodology couples the arterial fluid dynamics of a human body with a multi-segmental bioheat model of surrounding solid tissues. In the present configuration, arterial flow is included through a network of elastic vessels. More than a dozen solid segments are employed to represent the heat conduction in the surrounding tissues, and each segment is constituted by a multilayered circular cylinder. Such multi-layers allow flexible delineation of the geometry and incorporation of properties of different tissue types. The coupling of solid tissue and fluid models requires subdivision of the arterial circulation into large and small arteries. The heat exchange between tissues and arterial wall occurs by convection in large vessels and by perfusion in small arteries. The core region, including the heart, provides the inlet conditions for the fluid equations. In the proposed model, shivering, sweating, and perfusion changes constitute the basis of the thermoregulatory system. The equations governing flow and heat transfer in the circulatory system are solved using a locally conservative Galerkin approach, and the heat conduction in the surrounding tissues is solved using a standard implicit backward Euler method. To investigate the effectiveness of the proposed model, temperature field evolutions are monitored at different points of the arterial tree and in the surrounding tissue layers. To study the differences due to flow-induced convection effects on thermal balance, the results of the current model are compared against those of the widely used modelling methodologies. The results show that the convection significantly influences the temperature distribution of the solid tissues in the vicinity of the arteries. Thus, the inner convection has a more predominant role in the human body heat balance than previously thought. To demonstrate its capabilities, the proposed new model is used to study different scenarios, including thermoregulation inactivity and variation in surrounding atmospheric conditions.  相似文献   
8.

This study presents an application of machine learning (ML) methods for detecting the presence of stenoses and aneurysms in the human arterial system. Four major forms of arterial disease—carotid artery stenosis (CAS), subclavian artery stenosis (SAS), peripheral arterial disease (PAD), and abdominal aortic aneurysms (AAA)—are considered. The ML methods are trained and tested on a physiologically realistic virtual patient database (VPD) containing 28,868 healthy subjects, adapted from the authors previous work and augmented to include disease. It is found that the tree-based methods of Random Forest and Gradient Boosting outperform other approaches. The performance of ML methods is quantified through the \(F_1\) score and computation of sensitivities and specificities. When using six haemodynamic measurements (pressure in the common carotid, brachial, and radial arteries; and flow-rate in the common carotid, brachial, and femoral arteries), it is found that maximum \(F_1\) scores larger than 0.9 are achieved for CAS and PAD, larger than 0.85 for SAS, and larger than 0.98 for both low- and high-severity AAAs. Corresponding sensitivities and specificities are larger than 90% for CAS and PAD, larger than 85% for SAS, and larger than 98% for both low- and high-severity AAAs. When reducing the number of measurements, performance is degraded by less than 5% when three measurements are used, and less than 10% when only two measurements are used for classification. For AAA, it is shown that \(F_1\) scores larger than 0.85 and corresponding sensitivities and specificities larger than 85% are achievable when using only a single measurement. The results are encouraging to pursue AAA monitoring and screening through wearable devices which can reliably measure pressure or flow-rates.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号