首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   3篇
  2023年   2篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   9篇
  2013年   2篇
  2012年   9篇
  2011年   5篇
  2010年   9篇
  2009年   6篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
排序方式: 共有78条查询结果,搜索用时 46 毫秒
1.
Entamoeba histolytica is a protist parasite that is the causative agent of amoebiasis, and is a highly motile organism. The motility is essential for its survival and pathogenesis, and a dynamic actin cytoskeleton is required for this process. EhCoactosin, an actin-binding protein of the ADF/cofilin family, participates in actin dynamics, and here we report our studies of this protein using both structural and functional approaches. The X-ray crystal structure of EhCoactosin resembles that of human coactosin-like protein, with major differences in the distribution of surface charges and the orientation of terminal regions. According to in vitro binding assays, full-length EhCoactosin binds both F- and G-actin. Instead of acting to depolymerize or severe F-actin, EhCoactosin directly stabilizes the polymer. When EhCoactosin was visualized in E. histolytica cells using either confocal imaging or total internal reflectance microscopy, it was found to colocalize with F-actin at phagocytic cups. Over-expression of this protein stabilized F-actin and inhibited the phagocytic process. EhCoactosin appears to be an unusual type of coactosin involved in E. histolytica actin dynamics.  相似文献   
2.
3.
Experimental results of RNase-A stabilization by sugar osmolytes show that the change in the Gibbs free energy (ΔGD) associated with the equilibrium, N (native) state ? D (denatured) state of the protein in the presence of equimolar mixture of monosaccharides is larger than that of the corresponding oligosaccharides at a given temperature and pH. However, at the molar scale, ΔGD obtained in the presence of an oligosaccharide is much higher as compared with ΔGD obtained using individual monosaccharide. We used scaled particle theory (SPT) to explain these experimental observations. The effective length, called Tolman's length that describes the curvature correlations to a surface area or surface tension and in turn contributes to the change in free energy, is discussed. Tolman's length is higher for corresponding monomer mixture than the oligosaccharide molecules. Based on SPT analysis, a geometrical model is proposed for clustering of monosaccharides in the mixture due to high particle density. The cluster is presumed to have weak interaction among them due to larger hydrodynamic radius than that of the bonded molecules of oligosaccharides.  相似文献   
4.
We report, for the first time, that certain N-acetylthiourea derivatives serve as highly potent and isozyme selective activators for the recombinant form of human histone deacetylase-8 in the assay system containing Fluor-de-Lys as a fluorescent substrate. The experimental data reveals that such activating feature is manifested via decrease in the K(m) value of the enzyme's substrate and increase in the catalytic turnover rate of the enzyme.  相似文献   
5.
Presence of adrenocorticotropic hormone (ACTH) was investigated in tissues from 150 cases of primary breast cancer. ACTH peptides were detected in 16.7% cases and ACTH expression was higher in post-menopausal cancers. A significant association was noticed between the presence of ACTH and the positive estrogen receptor (ER) status of tumors. The study indicated a probable role of these ectopic ACTH peptides in steroid hormone related pathology of breast cancer.  相似文献   
6.
The interactions between NO and O(2) in activated macrophages were analysed by incorporating previous cell culture and enzyme kinetic results into a novel reaction-diffusion model for plate cultures. The kinetic factors considered were: (i) the effect of O(2) on NO production by inducible NO synthase (iNOS); (ii) the effect of NO on NO synthesis by iNOS; (iii) the effect of NO on respiratory and other O(2) consumption; and (iv) the effects of NO and O(2) on NO consumption by a possible NO dioxygenase (NOD). Published data obtained by varying the liquid depth in macrophage cultures provided a revealing test of the model, because varying the depth should perturb both the O(2) and the NO concentrations at the level of the cells. The model predicted that the rate of NO(2)(-) production should be nearly constant, and that the net rate of NO production should decline sharply with increases in liquid depth, in excellent agreement with the experimental findings. In further agreement with available results for macrophage cultures, the model predicted that net NO synthesis should be more sensitive to liquid depth than to the O(2) concentration in the headspace. The main reason for the decrease in NO production with increasing liquid depth was the modulation of NO synthesis by NO, with O(2) availability playing only a minor role. The model suggests that it is the ability of iNOS to consume NO, as well as to synthesize it, that creates very sensitive feedback control, setting an upper bound on the NO concentration of approximately 1 microM. The effect of NO consumption by other possible pathways (e.g., NOD) would be similar to that of iNOS, in that it would help limit net NO production. The O(2) utilized during enzymatic NO consumption is predicted to make the O(2) demands of activated macrophages much larger than those of unactivated ones (where iNOS is absent); this remains to be tested experimentally.  相似文献   
7.
With the completion of the Human Genome Project in 2003, many new projects to sequence bacterial genomes were started and soon many complete bacterial genome sequences were available. The sequenced genomes of pathogenic bacteria provide useful information for understanding host-pathogen interactions. These data prove to be a new weapon in fighting against pathogenic bacteria by providing information about potential drug targets. But the limitation of computational tools for finding potential drug targets has hindered the process and further experimental analysis. There are many in silico approaches proposed for finding drug targets but only few have been automated. One such approach finds essential genes in bacterial genomes with no human homologue and predicts these as potential drug targets. The same approach is used in our tool. T-iDT, a tool for the identification of drug targets, finds essential genes by comparing a bacterial gene set against DEG (Database of Essential Genes) and excludes homologue genes by comparing against a human protein database. The tool predicts both the set of essential genes as well as potential target genes for the given genome. The tool was tested with Mycobacterium tuberculosis and results were validated. With default parameters, the tool predicted 236 essential genes and 52 genes to encode potential drug targets. A pathway-based approach was used to validate these potential drug target genes. The pathway in which the products of these genes are involved was determined. Our analysis shows that almost all these pathways are very essential for the bacterial survival and hence these genes encode possible drug targets. Our tool provides a fast method for finding possible drug targets in bacterial genomes with varying stringency level. The tool will be helpful in finding possible drug targets in various pathogenic organisms and can be used for further analysis in novel therapeutic drug development. The tool can be downloaded from http://www.milser.co.in/research.htm and http://www.srmbioinformatics.edu.in/ forum.htm.  相似文献   
8.
We report herein, for the first time, that Europium ion (Eu3+) binds to the “apo” form of Escherichia coli methionine aminopeptidase (EcMetAP), and such binding results in the activation of the enzyme as well as enhancement in the luminescence intensity of the metal ion. Due to competitive displacement of the enzyme-bound Eu3+ by different metal ions, we could determine the binding affinities of both “activating” and “non-activating” metal ions for the enzyme via fluorescence spectroscopy. The experimental data revealed that among all metal ions, Fe2+ exhibited the highest binding affinity for the enzyme, supporting the notion that it serves as the physiological metal ion for the enzyme. However, the enzyme-metal binding data did not adhere to the Irving-William series. On accounting for the binding affinity vis a vis the catalytic efficiency of the enzyme for different metal ions, it appears evident that that the “coordination states” and the relative softness” of metal ions are the major determinants in facilitating the EcMetAP catalyzed reaction.  相似文献   
9.
In this study, we aimed to evaluate the in vitro probiotic characteristics of three bacteria, Lactobacillus plantarum VSG3, Pseudomonas aeruginosa VSG2, and Bacillus subtilis VSG1, isolated from the gut of Labeo rohita. The bacterial isolates tolerated low pH and high bile concentrations in the fish well. The bacterial adhesion capacity to fish intestinal mucosa revealed that the three potential probiotic isolates had a significantly higher adhesion capacity compared to the pathogenic strains tested. L. plantarum VSG3 exhibited the best adhesion capacity (19.1?%) to the intestinal mucosa. Among the isolates, L. plantarum VSG3 and P. aeruginosa VSG2 showed strong antibacterial activities against fish pathogens as measured in spent culture liquids. Moreover, all the isolates were susceptible to each tested antibiotic, which ensured their inability to exhibit antibiotic-resistance properties. Considering these promising results, selected strains should be further studied to determine their probiotic effects in vivo in fish.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号