首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   7篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   7篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1981年   1篇
排序方式: 共有70条查询结果,搜索用时 46 毫秒
1.
The effects of an increase in the absolute environmental pressure (air, N2, O2 or hydrostatic), up to 1 MPa, on the germination of wheat seeds and the survival of wheat seedlings were studied. Seeds were exposed to saline and non-saline media, in Petri dishes, on a double layer of filter paper. They were then introduced for different time periods into a pressure chamber and pressurized by the addition of N2 to the chamber in the range of ambient to 1 MPa. Subsequently the seeds were left to germinate under normal atmospheric conditions. Seed germination and subsequent growth decreased during the first 6 h and then regained the control levels. Nevertheless, application of similar pressures to seeds which had been submerged under water was highly inhibitory. Such effects of pressure seem to be the result of flooding with water of some crucial intercellular spaces and a consequent disturbance of O2 supply to the germinating embryo. The additional flood-water comprised only 1–3% of the total water content of 24-h-old seedlings. Sensitivity of the submerged seeds and the germinating seedlings to pressure varied with age and developmental stage. Highest sensitivity to pressure was obtained with 12 to 72-h-old submerged seedlings. Removal of the excess water after the pressure treatment restored the germinability of the seeds.  相似文献   
2.
After experimental treatment of rats with clofibrate or ciprofibrate, two peroxisomes proliferators with hypolipidemic activity, RNAs were prepared from liver, kidney, heart and brain; hybridization was done with DNA probes for c-myc and c-Ha-ras oncogenes and for cyanide insensitive Acyl CoA oxidase, a peroxisomal protein. c-myc mRNA is highly abundant in liver and at a lower extent in kidney, especially after treatment with ciprofibrate; clofibrate also allows a c-myc mRNA increase, but at a lower extent. c-Ha-ras, which is already expressed in all tested tissues from control animals, is stimulated by clofibrate and ciprofibrate treatments. Comparatively these compounds stimulate the cyanide insensitive Acyl CoA oxidase expression as well as they increase the somatic index of liver and kidney. From these experiments we suggest that hepatocarcinogenesis triggered by some hypolipidemic agents could be mediated by proto-oncogene mRNA level increase.  相似文献   
3.

Objectives

This study explored how adult social class and social mobility between parental and own adult social class is related to psychiatric disorder.

Material and Methods

In this prospective cohort study, over 1 million employed Swedes born in 1949-1959 were included. Information on parental class (1960) and own mid-life social class (1980 and 1990) was retrieved from the censuses and categorised as High Non-manual, Low Non-manual, High Manual, Low Manual and Self-employed. After identifying adult class, individuals were followed for psychiatric disorder by first admission of schizophrenia, alcoholism and drug dependency, affective psychosis and neurosis or personality disorder (N=24 659) from the Swedish Patient Register. We used Poisson regression analysis to estimate first admission rates of psychiatric disorder per 100 000 person-years and relative risks (RR) by adult social class (treated as a time-varying covariate). The RRs of psychiatric disorder among the Non-manual and Manual classes were also estimated by magnitude of social mobility.

Results

The rate of psychiatric disorder was significantly higher among individuals belonging to the Low manual class as compared with the High Non-manual class. Compared to High Non-manual class, the risk for psychiatric disorder ranged from 2.07 (Low Manual class) to 1.38 (Low Non-manual class). Parental class had a minor impact on these estimates. Among the Non-manual and Manual classes, downward mobility was associated with increased risk and upward mobility with decreased risk of psychiatric disorder. In addition, downward mobility was inversely associated with the magnitude of social mobility, independent of parental class.

Conclusions

Independently of parental social class, the risk of psychiatric disorder increases with increased downward social mobility and decreases with increased upward mobility.  相似文献   
4.
The elongation factor EF-Tu carries aminoacyl-tRNAs to the A-site of the ribosome during the elongation process of protein biosynthesis. We, and others, have recently reported that the Escherichia coli EF-Tu interacts with unfolded and denatured proteins and behaves like a chaperone in protein folding and protection against protein thermal denaturation. In this study, we have identified EF-Tu binding sites in protein substrates by screening cellulose-bound peptides scanning the sequences of several proteins. The binding motifs recognized by EF-Tu in protein substrates are also recognized by the chaperone DnaK and mainly consist of hydrophobic clusters. EF-Tu interacts as efficiently as DnaK with the membrane spanning sequence of the membrane protein phospholemman and with the signal sequence of alkaline phosphatase. It interacts less efficiently with several other hydrophobic clusters of lysozyme and alkaline phosphatase, which are also DnaK substrates and fails to bind to several DnaK binding sites. Our results suggest that EF-Tu, like DnaK, interacts albeit more weakly with the hydrophobic regions of substrate protein and are consistent with the hypothesis that it possesses chaperone properties.  相似文献   
5.
We cloned, expressed, and purified the hdeB gene product, which belongs to the hdeAB acid stress operon. We extracted HdeB from bacteria by the osmotic-shock procedure and purified it to homogeneity by ion-exchange chromatography and hydroxyapatite chromatography. Its identity was confirmed by mass spectrometry analysis. HdeB has a molecular mass of 10 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which matches its expected molecular mass. We purified the acid stress chaperone HdeA in parallel in order to compare the two chaperones. The hdeA and hdeB mutants both display reduced viability upon acid stress, and only the HdeA/HdeB expression plasmid can restore their viability to close to the wild-type level, suggesting that both proteins are required for optimal protection of the bacterial periplasm against acid stress. Periplasmic extracts from both mutants aggregate at acidic pH, suggesting that HdeA and HdeB are required for protein solubilization. At pH 2, the aggregation of periplasmic extracts is prevented by the addition of HdeA, as previously reported, but is only slightly reduced by HdeB. At pH 3, however, HdeB is more efficient than HdeA in preventing periplasmic-protein aggregation. The solubilization of several model substrate proteins at acidic pH supports the hypothesis that, in vitro, HdeA plays a major role in protein solubilization at pH 2 and that both proteins are involved in protein solubilization at pH 3. Like HdeA, HdeB exposes hydrophobic surfaces at acidic pH, in accordance with the appearance of its chaperone properties at acidic pH. HdeB, like HdeA, dissociates from dimers at neutral pH into monomers at acidic pHs, but its dissociation is complete at pH 3 whereas that of HdeA is complete at a more acidic pH. Thus, we can conclude that Escherichia coli possesses two acid stress chaperones that prevent periplasmic-protein aggregation at acidic pH.  相似文献   
6.
p53 is essential for cell cycle arrest and apoptosis induction while insulin receptor (IR) signaling is important for cell metabolism and proliferation and found upregulated in cancers. While IR has recently been found to be involved in apoptosis, p53 induction or apoptosis mediated through IR signaling activation has never been documented. Here, we report that the IR signaling pathway, particularly the IR-MEK pathway, mediates biological and biochemical changes in p53 and apoptosis in tumor cells. Specifically, natural compound penta-O-galloyl-α-d-glucopyranose (α-PGG), a previously characterized IR signaling activator, induced apoptosis in RKO cells without significantly affecting its normal counterpart FHC cells. α-PGG induced apoptosis in RKO cells through p53, Bax and caspase 3. Importantly, α-PGG’s ability to elevate p53 was diminished by IR inhibitor and IR-siRNA, suggesting a non-conventional role of IR as being involved in p53 induction. Further studies revealed that α-PGG activated MEK, a downstream signaling factor of IR. Blocking MEK significantly suppressed α-PGG-induced p53 and Bax elevation. All these results suggested that α-PGG induced p53, Bax, and apoptosis through the IR-MEK signaling pathway. The unique activity of α-PGG, a novel IR phosphorylation and apoptosis inducer, may offer a new therapeutic strategy for eliciting apoptotic signal and inhibiting cancer growth.  相似文献   
7.
8.
Hsp31, the Escherichia coli hcha gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperature. Its crystal structure reveals a putative Cys(184), His(185), and Asp(213) catalytic triad similar to that of the Pyrococcus horikoshii protease PH1704, suggesting that it should display a proteolytic activity. A preliminary report has shown that Hsp31 has an exceedingly weak proteolytic activity toward bovine serum albumin and a peptidase activity toward two peptide substrates with small amino acids at their N terminus (alanine or glycine), but the physiological significance of this observation remains unclear. In this study, we report that Hsp31 does not diplay any significant proteolytic activity but has peptidolytic activity. The aminopeptidase cleavage preference of Hsp31 is Ala > Lys > Arg > His, suggesting that Hsp31 is an aminopeptidase of broad specificity. Its aminopeptidase activity is inhibited by the thiol reagent iodoacetamide and is completely abolished in a C185A mutant, which is consistent with Hsp31 being a cysteine peptidase. The aminopeptidase activity of Hsp31 is also inhibited by EDTA and 1,10-phenanthroline, in concordance with the importance of the putative His(85), His(122), and Glu(90) metal-binding site revealed by crystallographic studies. An Hsp31-deficient mutant accumulates more 8-12-mer peptides than its parental strain, and purified Hsp31 can transform these peptides into smaller peptides, suggesting that Hsp31 has an important peptidase function both in vivo and in vitro. Proteins interacting with Hsp31 have been identified by reverse purification of a crude E. coli extract on an Hsp31-affinity column, followed by SDS-polyacrylamide electrophoresis and mass spectrometry. The ClpA component of the ClpAP protease, the chaperone GroEL, elongation factor EF-Tu, and tryptophanase were all found to interact with Hsp31, thus substantiating the role of Hsp31 as both chaperone and peptidase.  相似文献   
9.
YajL is the closest Escherichia coli homolog of the Parkinsonism-associated protein DJ-1, a multifunctional oxidative stress response protein whose biochemical function remains unclear. We recently reported the aggregation of proteins in a yajL mutant in an oxidative stress-dependent manner and that YajL exhibits chaperone activity. Here, we show that YajL displays covalent chaperone and weak protein oxidoreductase activities that are dependent on its exposed cysteine 106. It catalyzes reduced RNase oxidation and scrambled RNase isomerization and insulin reduction and forms mixed disulfides with many cellular proteins upon oxidative stress. The formation of mixed disulfides was detected by immunoblotting bacterial extracts with anti-YajL antibodies under nonreducing conditions. Disulfides were purified from bacterial extracts on a YajL affinity column, separated by nonreducing-reducing SDS-PAGE, and identified by mass spectrometry. Covalent YajL substrates included ribosomal proteins, aminoacyl-tRNA synthetases, chaperones, catalases, peroxidases, and other proteins containing cysteines essential for catalysis or FeS cluster binding, such as glyceraldehyde-3-phosphate dehydrogenase, aldehyde dehydrogenase, aconitase, and FeS cluster-containing subunits of respiratory chains. In addition, we show that DJ-1 also forms mixed disulfides with cytoplasmic proteins upon oxidative stress. These results shed light on the oxidative stress-dependent chaperone function of YajL and identify YajL substrates involved in translation, stress protection, protein solubilization, and metabolism. They reveal a crucial role for cysteine 106 and suggest that DJ-1 also functions as a covalent chaperone. These findings are consistent with several defects observed in yajL or DJ-1 mutants, including translational defects, protein aggregation, oxidative stress sensitivity, and metabolic deficiencies.  相似文献   
10.
YajL is the closest Escherichia coli homolog of the Parkinsonism-associated protein DJ-1, a multifunctional oxidative stress response protein whose biochemical function remains unclear. We recently described the oxidative-stress-dependent aggregation of proteins in yajL mutants and the oxidative-stress-dependent formation of mixed disulfides between YajL and members of the thiol proteome. We report here that yajL mutants display increased protein sulfenic acids levels and that formation of mixed disulfides between YajL and its protein substrates in vivo is inhibited by the sulfenic acid reactant dimedone, suggesting that YajL preferentially forms disulfides with sulfenylated proteins. YajL (but not YajL(C106A)) also forms mixed disulfides in vitro with the sulfenylated form of bovine serum albumin. The YajL-serum albumin disulfides can be subsequently reduced by glutathione or dihydrolipoic acid. We also show that DJ-1 can form mixed disulfides with sulfenylated E. coli proteins and with sulfenylated serum albumin. These results suggest that YajL and possibly DJ-1 function as covalent chaperones involved in the detection of sulfenylated proteins by forming mixed disulfides with them and that these disulfides are subsequently reduced by low-molecular-weight thiols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号