首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
  2022年   1篇
  2021年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   7篇
  2011年   1篇
  2010年   1篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2001年   2篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
1.
Gap junctions serve as intercellular conduits that allow for the direct transfer of small molecular weight molecules (up to 1 kDa) including ions involved in cellular excitability, metabolic precursors, and second messengers. The observation of extensive intercellular coupling and large numbers of gap junctions in the central nervous system (CNS) suggests a syncytium-like organization of glial compartments. Inflammation is a hallmark of various CNS diseases such as bacterial and viral infections, multiple sclerosis, Alzheimer's disease, and cerebral ischemia. A general consequence of brain inflammation is reactive gliosis typified by astrocyte hypertrophy and proliferation of astrocytes and microglia. Changes in gap junction intercellular communication as reflected by alterations in dye coupling and connexin expression have been associated with numerous CNS inflammatory diseases, which may have dramatic implications on the survival of neuronal and glial populations in the context of neuroinflammation. A review of the effects of inflammatory products on glia-glia gap junctional communication and glial glutamate release is presented. In addition, the hypothesis of a "syncytial switch" based upon differential regulation of gap junction expression in astrocytes and microglia during normal CNS homeostasis and neuroinflammation is proposed.  相似文献   
2.
Amino acid residues 57–69 in B-crystallin have been implicated as a target protein binding site. Moreover, a direct correlation between the extent of -crystallin hydrophobicity and chaperone-like activity has been demonstrated. The purpose of this study was to mutate a moderately hydrophobic residue Met-68 (M-68) in the above region to strongly hydrophobic and hydrophilic residues and show whether chaperoning ability is affected with or without structural changes. Mutation of M-68 to Val, Ile or Thr did not result in significant changes in molecular mass and secondary and tertiary structures. However, the Val and Ile mutants showed significant improvement and the Thr mutant showed substantial loss in chaperone activity. Differences in chaperone function in the absence of any structural changes confirmed that the hydrophobicity or hydrophilicity of the substituted amino acid in the putative target protein binding site was the only contributing factor.  相似文献   
3.
Establishing bioequivalence (BE) of drugs indicated to treat cancer poses special challenges. For ethical reasons, often, the studies need to be conducted in cancer patients rather than in healthy volunteers, especially when the drug is cytotoxic. The Biopharmaceutics Classification System (BCS) introduced by Amidon (1) and adopted by the FDA, presents opportunities to avoid conducting the bioequivalence studies in humans. This paper analyzes the application of the BCS approach by the generic pharmaceutical industry and the FDA to oncology drug products. To date, the FDA has granted BCS-based biowaivers for several drug products involving at least four different drug substances, used to treat cancer. Compared to in vivo BE studies, development of data to justify BCS waivers is considered somewhat easier, faster, and more cost effective. However, the FDA experience shows that the approval times for applications containing in vitro studies to support the BCS-based biowaivers are often as long as the applications containing in vivo BE studies, primarily because of inadequate information in the submissions. This paper deliberates some common causes for the delays in the approval of applications requesting BCS-based biowaivers for oncology drug products. Scientific considerations of conducting a non-BCS-based in vivo BE study for generic oncology drug products are also discussed. It is hoped that the information provided in our study would help the applicants to improve the quality of ANDA submissions in the future.KEY WORDS: Biopharmaceutics Classification System, bioequivalence, biowaiver, cancer, oncology  相似文献   
4.
Brain abscesses form in response to a parenchymal infection by pyogenic bacteria, with Staphylococcus aureus representing a common etiologic agent of human disease. Numerous receptors that participate in immune responses to bacteria, including the majority of TLRs, the IL-1R, and the IL-18R, use a common adaptor molecule, MyD88, for transducing activation signals leading to proinflammatory mediator expression and immune effector functions. To delineate the importance of MyD88-dependent signals in brain abscesses, we compared disease pathogenesis using MyD88 knockout (KO) and wild-type (WT) mice. Mortality rates were significantly higher in MyD88 KO mice, which correlated with a significant reduction in the expression of several proinflammatory mediators, including but not limited to IL-1beta, TNF-alpha, and MIP-2/CXCL2. These changes were associated with a significant reduction in neutrophil and macrophage recruitment into brain abscesses of MyD88 KO animals. In addition, microglia, macrophages, and neutrophils isolated from the brain abscesses of MyD88 KO mice produced significantly less TNF-alpha, IL-6, MIP-1alpha/CCL3, and IFN-gamma-induced protein 10/CXCL10 compared with WT cells. The lack of MyD88-dependent signals had a dramatic effect on the extent of tissue injury, with significantly larger brain abscesses typified by exaggerated edema and necrosis in MyD88 KO animals. Interestingly, despite these striking changes in MyD88 KO mice, bacterial burdens did not significantly differ between the two strains at the early time points examined. Collectively, these findings indicate that MyD88 plays an essential role in establishing a protective CNS host response during the early stages of brain abscess development, whereas MyD88-independent pathway(s) are responsible for pathogen containment.  相似文献   
5.
Superantigens (SAGs) bind simultaneously to major histocompatibility complex (MHC) and T-cell receptor (TCR) molecules, resulting in the massive release of inflammatory cytokines that can lead to toxic shock syndrome (TSS) and death. A major causative agent of TSS is toxic shock syndrome toxin-1 (TSST-1), which is unique relative to other bacterial SAGs owing to its structural divergence and its stringent TCR specificity. Here, we report the crystal structure of TSST-1 in complex with an affinity-matured variant of its wild-type TCR ligand, human T-cell receptor beta chain variable domain 2.1. From this structure and a model of the wild-type complex, we show that TSST-1 engages TCR ligands in a markedly different way than do other SAGs. We provide a structural basis for the high TCR specificity of TSST-1 and present a model of the TSST-1-dependent MHC-SAG-TCR T-cell signaling complex that is structurally and energetically unique relative to those formed by other SAGs. Our data also suggest that protein plasticity plays an exceptionally significant role in this affinity maturation process that results in more than a 3000-fold increase in affinity.  相似文献   
6.
Microglial activation is a hallmark of brain abscess. The continual release of proinflammatory mediators by microglia following bacterial challenge may contribute, in part, to the destruction of surrounding normal tissue characteristic of brain abscess. Therefore, attenuating chronic microglial activation during the course of CNS bacterial infections may have therapeutic benefits. The purpose of this study was to evaluate the ability of the natural peroxisome proliferator-activated receptor (PPAR)-gamma agonist 15-deoxy-Delta12,14- prostaglandin J2 (15d-PGJ2) to modulate microglial activation in response to Staphylococcus aureus, one of the main etiologic agents of brain abscess in humans. 15d-PGJ2 was a potent inhibitor of proinflammatory cytokine (IL-1beta, TNF-alpha, IL-12 p40) and CC chemokine (MIP-1beta, MCP-1) production in primary microglia, but had no effect upon the expression of select CXC chemokines (MIP-2, KC). 15d-PGJ2 also selectively inhibited the S. aureus-dependent increase in microglial TLR2, CD14, MHC class II, and CD40 expression, whereas it had no effect on the co-stimulatory molecules CD80 and CD86. Microarray analysis revealed additional inflammatory mediators modulated by 15d-PGJ2 in primary microglia following S. aureus exposure, the majority of which were chemokines. These results suggest that suppressing microglial activation through the use of 15d-PGJ2 may lead to the sparing of damage to normal brain parenchyma that often results from brain abscess.  相似文献   
7.
The aim of this study was to determine the consistency of spouses' declarations about contraceptive use and child desire in Turkey. Husbands eligible for the study were currently married to eligible women, i.e. those who generally lived in the same household or who stayed in the household the night before the interview. Husband questionnaires were completed by 1971 men. It was found that 88.9% of the couples had not talked about family planning with each other in the last two months. The percentage of answers on current contraceptive use for all methods that were consistent for husbands and wives was 70.2%. The consistency among partners who stated they would like to have children in the future was found to be 94.8%, and that among partners who were planning to use a contraceptive method was found to be 88.3%.  相似文献   
8.
Many secreted or cell surface proteins are post-translationally modified by carbohydrate chains which are a primary source of heterogeneity. The Lec1 mutant, which is defective in Golgi N-acetylglucosaminyltransferase I (GnTI) activity, produces relatively homogeneous Man(5) GlcNAc(2) glycan modifications, and is widely used for various applications. To facilitate the investigation of GnTI, its Man5 glycan endproduct, and the impact of Man5 on effector function, the present study has established several novel Lec1 mutants in dhfr(-) CHO-DUKX cells through chemical mutagenesis and lectin selection. A total of nine clonal lines exhibiting the Lec1-phenotype are characterized, six of which harbor non-sense mutations leading to a truncated GnTI, and three (R415K, D291N, and P138L) of which are novel loss-of-function sense mutations. Analysis of the rabbit GnTI structure (Unligil et al., 2000) indicates that D291 is the proposed catalytic base and R415 is a crucial residue in forming the substrate binding pocket, whereas P138 is key to maintaining two β strands in proximity to the substrate binding pocket. Computational modeling reveals that the oligomannose glycan backbone of a glycoprotein (the acceptor substrate) fits nicely into the unoccupied channel of the substrate binding pocket partly through hydrogen bonding with R415 and D291. This finding is consistent with the ordered sequential Bi Bi kinetic mechanism suggested for GnTI, in which binding of UDP-GlcNAc (the donor substrate)/Mn(2+) induces conformational changes that promote acceptor binding. When an anti-human CD20 antibody protein is stably expressed in one CHO-DUKX-Lec1 line, it is confirmed that N-glycans are predominantly Man(5) GlcNAc(2) and they do not contain an α1,6-fucose linked to the innermost GlcNAc. Furthermore, this Man(5) GlcNAc(2) modified antibody exhibits a significantly increased ADCC activity than the wild-type protein, while displaying a lower CDC activity. The data support the hypothesis that modulating GnTI activity can influence antibody effector functions for proteins with an IgG1 immunoglobulin Fc domain.  相似文献   
9.
The inhibitory receptor programmed death-1 (PD-1) is present on CD8(+) T cells in chronic hepatitis C virus (HCV), but expression patterns in spontaneously resolving infections are incompletely characterized. Here we report that PD-1 was usually absent on memory CD8(+) T cells from chimpanzees with resolved infections, but sustained low-level expression was sometimes observed in the absence of apparent virus replication. PD-1-positive memory T cells expanded and displayed antiviral activity upon reinfection with HCV, indicating conserved function. This animal model should facilitate studies of whether PD-1 differentially influences effector and memory T-cell function in resolved versus persistent human infections.  相似文献   
10.
Various molecular and cellular processes are involved in renal fibrosis, such as oxidative stress, inflammation, endothelial cell injury, and apoptosis. Heat shock proteins (HSPs) are implicated in the progression of chronic kidney disease (CKD). Our aim was to evaluate changes in urine and serum HSP levels over time and their relationships with the clinical parameters of CKD in children. In total, 117 children with CKD and 56 healthy children were examined. The CKD group was followed up prospectively for 24 months. Serum and urine HSP27, HSP40, HSP47, HSP60, HSP70, HSP72, and HSP90 levels and serum anti-HSP60 and anti-HSP70 levels were measured by ELISA at baseline, 12 months, and 24 months. The urine levels of all HSPs and the serum levels of HSP40, HSP47, HSP60, HSP70, anti-HSP60, and anti-HSP70 were higher at baseline in the CKD group than in the control group. Over the months, serum HSP47 and HSP60 levels steadily decreased, whereas HSP90 and anti-HSP60 levels steadily increased. Urine HSP levels were elevated in children with CKD; however, with the exception of HSP90, they decreased over time. In conclusion, our study demonstrates that CKD progression is a complicated process that involves HSPs, but they do not predict CKD progression. The protective role of HSPs against CKD may weaken over time, and HSP90 may have a detrimental effect on the disease course.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01239-9.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号