首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2008年   5篇
排序方式: 共有5条查询结果,搜索用时 62 毫秒
1
1.
Analysis of radiosensitivity of double mutants in the yeast Saccharomyces cerevisiae revealed that checkpoint genes RAD9, RAD17, RAD24, and RAD53 along with genes CDC28 and NET1 belong to one epistasis group designated the RAD9 group. The use of srm mutations allowed the demonstration of a branched RAD9-dependent pathway of cell radioresistance. Mutation cdc28-srm is hypostatic to rad9Δ, rad17Δ, and rad24Δ being additive with rad53. Mutation net1-srm is hypostatic to rad9Δ and rad53 but additively enhance the effects of mutations rad17Δ and rad24Δ. Gene SRM12/HFI1 is not a member of the RAD9 group. Mutation in gene hfi1-srm manifests the additive effect on mutations rad24Δ and rad9Δ. The analyzed genes can also participate in minor mechanisms of radioresistance that are relatively independent of the above RAD9-dependent mechanism.  相似文献   
2.
Mechanisms for genetic control of cell division cycle (checkpoint control) have been studied in most detail in yeast Saccharomyces cerevisiae. To clarify the role of checkpoint genes RAD9, RAD17, RAD24, and RAD53 in cell radioresistance, double mutants were analyzed for cell sensitivity to ionizing radiation. Double mutants carrying mutations in combination with mutation rad9Delta were shown to manifest the epistatic type of interaction. Our results suggest that checkpoint genes RAD9, RAD17, RAD24, and RAD53 belong to a single epistatic group designated RAD9 and govern the same pathway. Genes RAD9 and RAD53 have a positive effect on sensitivity to gamma-radiation, whereas RAD17 and RAD24 have a negative effect. Interactions between mutations may differ when considering their sensitivity to gamma-radiation and UV light; mutations rad9Delta and rad24Delta were shown to manifest the additive effect in the first case and epistatic effect in the second.  相似文献   
3.
Mechanisms for genetic control of cell division cycle (checkpoint control) have been studied in most detail in yeast Saccharomyces cerevisiae. To clarify the role of checkpoint genes RAD9, RAD17, RAD24, and RAD53 in cell radioresistance, double mutants were analyzed for cell sensitivity to ionizing radiation. Double mutants carrying mutations in combination with mutation rad9delta were shown to manifest the epistatic type of interaction. Our results suggest that checkpoint genes RAD9, RAD17, RAD24, and RAD53 belong to a single epistatic group designated RAD9 and govern the same pathway. Genes RAD9 and RAD53 have a positive effect on sensitivity to gamma-radiation, whereas RAD17 and RAD24 have a negative effect. Interactions between mutations may differ when considering their sensitivity to gamma-radiation and UV light; mutations rad9delta and rad24delta were shown to manifest the additive effect in the first case and epistatic effect in the second.  相似文献   
4.
Mechanisms for genetic control of cell division cycle (checkpoint control) have been studied in most detail in yeast Saccharomyces cerevisiae. To clarify the role of checkpoint genes RAD9, RAD17, RAD24, and RAD53 in cell radioresistance, double mutants were analyzed for cell sensitivity to ionizing radiation. Double mutants carrying mutations in combination with mutation rad9Δ were shown to manifest the epistatic type of interaction. Our results suggest that checkpoint genes RAD9, RAD17, RAD24, and RAD53 belong to a single epistatic group designated RAD9 and govern the same pathway. Genes RAD9 and RAD53 have a positive effect on sensitivity to γ-radiation, whereas RAD17 and RAD24 have a negative effect. Interactions between mutations may differ when considering their sensitivity to γ-radiation and UV light; mutations rad9Δ and rad24Δ were shown to manifest the additive effect in the first case and epistatic effect in the second.  相似文献   
5.

Chronicle

In memory of Aleksandr Borisovich Devin (1944–2007)  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号