首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   2篇
  36篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1990年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
2.
Abstract Pathogenesis mediated by Shigella flexneri requires invasion of the gastrointestinal epithelium. It has been previously shown that HeLa cells challenged with S. flexneri show alterations in their phosphotyrosine-containing protein profile. In this report, we demonstrated that bacterial water extracts (WE) abrogated the invasion of HeLa cells by S. flexneri in a dose-dependent manner. A proteinaceous component of S. flexneri was shown to be responsible for this inhibitory activity. Proteins encoded on the 140-MDa plasmid were not responsible for the observed inhibition. WE from other Gram-negative bacteria also inhibited Shigella invasion of HeLa cells. HeLa cells pretreated with WE showed changes in the profile and the intensity of phosphotyrosine-containing protein bands. These data were consistent with a surface protein component in WE which initiated aberrant host cell signaling at the membrane which may account for the inhibition of bacterial entry.  相似文献   
3.
A protein spot corresponding to l-glycerol-3-phosphate dehydrogenase (α-GPDH, E.C. 1.1.1.8, NAD+ oxidoreductase) has been identified on a two-dimensional gel (isoelectric focusing-SDS gel) containing up to 150 stained protein spots from a crude Drosophila homogenate. Preliminary identification of the α-GPDH spot was made by including a suitable amount of purified Drosophila α-GPDH in crude fly homogenates prior to electrophoresis and observing an intensity enhancement of the corresponding protein spot on the gels. When three purified electrophoretic variants (slow, fast, and ultrafast) were mixed and analyzed by two-dimensional gel electrophoresis, horizontal displacements of the three protein spots were observed. Immunoprecipitation of the enzyme prior to electrophoresis and gene mapping further confirmed the identity of the α-GPDH protein spot. The α-GPDH spot can also be detected by autoradiography of a two-dimensional gel from a single fly extract, where it has been estimated to constitute 0.5–1% of the total soluble protein. Mutants which express no apparent α-GPDH activity were analyzed by two-dimensional gels and immunoelectrophoresis in an attempt to identify and characterize the inactive proteins. It is suggested that these techniques provide a powerful tool for the analysis of CRM+-null activity mutants of a specific gene-enzyme system.  相似文献   
4.
Neutrophil activation plays an important role in the inflammatory response to Gram-negative bacterial infections. LPS has been shown to be a major mediator of neutrophil activation which is accompanied by an early down-regulation of L-selectin and up-regulation of CD1lb/CD18. In this study, we investigated whether lipoprotein (LP), the most abundant protein in the outer membrane of bacteria from the family Enterobacteriaceae, can activate neutrophils and whether this activation is mediated by mechanisms that differ from those used by LPS or Escherichia coli diphosphoryl lipid A (EcDPLA). Neutrophil activation was assessed by measuring down-regulation of L-selectin and up-regulation of CD11b/CD18. When comparing molar concentrations of LP vs EcDPLA, LP was more potent (four times) at activating neutrophils. In contrast to LPS/EcDPLA, LP activation of neutrophils was serum independent. However, LP activation of neutrophils was enhanced by the addition of soluble CD14 and/or LPS-binding protein. In the presence of serum, LP activation of neutrophils was inhibited by different mAbs to CD14. This inhibition was significantly reduced or absent when performed in the absence of serum. Diphosphoryl lipid A from Rhodobacter spheroides (RaDPLA) completely inhibited LPS/EcDPLA activation of neutrophils but only slightly inhibited LP activation of neutrophils. These results suggest that LP activation of human neutrophils can be mediated by a mechanism that is different from LPS activation and that LP is a potentially important component in the development of diseases caused by Gram-negative bacteria of the family Enterobacteriaceae.  相似文献   
5.
Current status of antisense DNA methods in behavioral studies   总被引:4,自引:0,他引:4  
Ogawa  S; Pfaff  DW 《Chemical senses》1998,23(2):249-255
The antisense DNA method has been used successfully to block the expression of specific genes in vivo in neuronal systems. An increasing number of studies in the last few years have shown that antisense DNA administered directly into the brain can modify various kinds of behaviors. These findings strongly suggest that the antisense DNA method can be used as a powerful tool to study causal relationships between molecular processes in the brain and behavior. In this article we review the current status of the antisense method in behavioral studies and discuss its potentials and problems by focusing on the following four aspects; (i) optimal application paradigms of antisense DNA methods in behavioral studies; (ii) efficiencies of different administration methods of antisense DNA used in behavioral studies; (iii) determination of specificity of behavioral effects of antisense DNA; and (iv) discrepancies between antisense DNA effects on behaviors and those on protein levels of the targeted gene.   相似文献   
6.

Background

A new subgroup of HIV-1, designated Group P, was recently detected in two unrelated patients of Cameroonian origin. HIV-1 Group P phylogenetically clusters with SIVgor suggesting that it is the result of a cross-species transmission from gorillas. Until today, HIV-1 Group P has only been detected in two patients, and its degree of adaptation to the human host is largely unknown. Previous data have shown that pandemic HIV-1 Group M, but not non-pandemic Group O or rare Group N viruses, efficiently antagonize the human orthologue of the restriction factor tetherin (BST-2, HM1.24, CD317) suggesting that primate lentiviruses may have to gain anti-tetherin activity for efficient spread in the human population. Thus far, three SIV/HIV gene products (vpu, nef and env) are known to have the potential to counteract primate tetherin proteins, often in a species-specific manner. Here, we examined how long Group P may have been circulating in humans and determined its capability to antagonize human tetherin as an indicator of adaptation to humans.

Results

Our data suggest that HIV-1 Group P entered the human population between 1845 and 1989. Vpu, Env and Nef proteins from both Group P viruses failed to counteract human or gorilla tetherin to promote efficient release of HIV-1 virions, although both Group P Nef proteins moderately downmodulated gorilla tetherin from the cell surface. Notably, Vpu, Env and Nef alleles from the two HIV-1 P strains were all able to reduce CD4 cell surface expression.

Conclusions

Our analyses of the two reported HIV-1 Group P viruses suggest that zoonosis occurred in the last 170 years and further support that pandemic HIV-1 Group M strains are better adapted to humans than non-pandemic or rare Group O, N and P viruses. The inability to antagonize human tetherin may potentially explain the limited spread of HIV-1 Group P in the human population.  相似文献   
7.
8.
9.
L-Lactate dehydrogenase (L-LDH, E.C. 1.1.1.27) is encoded by two or three loci in all vertebrates examined, with the exception of lampreys, which have a single LDH locus. Biochemical characterizations of LDH proteins have suggested that a gene duplication early in vertebrate evolution gave rise to Ldh-A and Ldh-B and that an additional locus, Ldh-C arose in a number of lineages more recently. Although some phylogenetic studies of LDH protein sequences have supported this pattern of gene duplication, others have contradicted it. In particular, a number of studies have suggested that Ldh-C represents the earliest divergence among vertebrate LDHs and that it may have diverged from the other loci well before the origin of vertebrates. Such hypotheses make explicit statements about the relationship of vertebrate and invertebrate LDHs, but to date, no closely related invertebrate LDH sequences have been available for comparison. We have attempted to provide further data on the timing of gene duplications leading to multiple vertebrate LDHs by determining the cDNA sequence of the LDH of the tunicate Styela plicata. Phylogenetic analyses of this and other LDH sequences provide strong support for the duplications giving rise to multiple vertebrate LDHs having occurred after vertebrates diverged from tunicates. The timing of these LDH duplications is consistent with data from a number of other gene families suggesting widespread gene duplication near the origin of vertebrates. With respect to the relationships among vertebrate LDHs, our data are not consistent with previous claims that Ldh-C represented the earliest divergence. However, the precise relationships among some of the main lineages of vertebrate LDHs were not resolved in our analyses.   相似文献   
10.
The susceptibility of bacteria-infected fibroblasts to the cytotoxic action of tumor necrosis factor was investigated. L cells infected with Shigella flexneri, Salmonella typhimurium, or Listeria monocytogenes, had an enhanced susceptibility to the cytotoxic activity of TNF-alpha. This enhanced susceptibility was dependent upon the challenge dose of bacteria, the concentration of TNF, and upon the exposure time of bacteria-infected cells to TNF. L cells infected with S. flexneri were susceptible to the cytotoxic action of TNF at 2 to 6 h after bacterial infection. In contrast, L cells infected with S. typhimurium or L. monocytogenes did not show enhanced susceptibility to TNF until 14 h postbacterial infection and exposure to TNF. Enhanced susceptibility to TNF was dependent on bacterial invasion because fibroblasts pretreated with a noninvasive isogenic variant of S. flexneri, UV-treated invasive bacteria, bacterial cultural supernatant, or bacteria LPS were no more susceptible to TNF than untreated cells. Enhanced susceptibility to TNF by bacteria-infected cells was not unique to L cells. Mouse embryo fibroblasts and HeLa cells also showed similar reactivities after bacteria infection. Bacteria-infected cells were greatly suppressed in host cell protein synthesis that may play an important role in their enhanced susceptibility to TNF. These results suggest that an important role of TNF in host defense against bacterial infections is its cytotoxic activity against bacteria-infected cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号