首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
A positive linear relationship between the net CO2 exchange rate (P N) and the leaf stomatal conductance (gs) under an optimal temperature, and even more distinct one after a short-term chilling (CH, 15-17 h, 2 °C in darkness), that was found in two tomato cultivars (sensitive to a low temperature cv. Robin and tolerant cv. New Yorker) suggested a partial stomatal limitation of photosynthesis. The CH treatment of cv. Robin resulted in an intercellular CO2 concentration (C i) increase because of which a negative correlation between C i and P N was observed. In cv. New Yorker a positive correlation was observed. Detrimental effect of the low temperature in cv. Robin was more evident in plants with a relatively small root system (SR), but drought-hardening positively affected the response to CH only in the plants with bigger roots (BR). On the contrary, in cv. New Yorker the favourable effect of such pre-treatment was more evident in SR than in BR plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
3.
Starck  Z.  Niemyska  B.  Bogdan  J.  Akour Tawalbeh  R. N. 《Plant and Soil》2000,226(1):99-106
The experiments were conducted on two tomato cultivars: Garbo and Robin. Mineral starvation due to plant growth in 20-fold diluted nutrient solution (DNS) combined with chilling reduced the rate of photosynthesis (P N) and stomatal conductance (g) to a greater extent than in plants grown in full nutrient solution (FNS). In phosphate-starved tomato plants the P N rate and stomatal conductance decreased more after chilling than in plants grown on FNS. In low-P plants even 2 days after chilling the recovery of CO2 assimilation rate and stomatal conductance was low. A resupply of phosphorus to low-P plants (low P + P) did not improve the rate of photosynthesis in non-chilled plants (NCh) but prevented PN inhibition in chilled (Ch) plants. The greatest effect of P resupply was expressed as a better recovery of photosynthesis and stomatal conductance, especially in non-chilled low P + P plants. The F v/F m (ratio of variable to maximal chlorophyll fluorescence) decreased more during P starvation than as an effect of chilling. Supplying phosphorus to low-P plants caused the slight increase in the F v/F mratio. In conclusion, after a short-term chilling in darkness a much more drastic inhibition of photosynthesis was observed in nutrient-starved or P-insufficient tomato plants than in plants from FNS. This inhibition was caused by the decrease in both photochemical efficiency of photosystems and the reduction of stomatal conductance. The presented results support the hypothesis that tomato plants with limited supply of mineral nutrients or phosphorus are more susceptible to chilling.  相似文献   
4.
Chołuj  D.  Kalaji  H.M.  Niemyska  B. 《Photosynthetica》1998,34(4):583-589
A positive linear relationship between the net CO2 exchange rate (P N) and the leaf stomatal conductance (gs) under an optimal temperature, and even more distinct one after a short-term chilling (CH, 15-17 h, 2 °C in darkness), that was found in two tomato cultivars (sensitive to a low temperature cv. Robin and tolerant cv. New Yorker) suggested a partial stomatal limitation of photosynthesis. The CH treatment of cv. Robin resulted in an intercellular CO2 concentration (C i) increase because of which a negative correlation between C i and P N was observed. In cv. New Yorker a positive correlation was observed. Detrimental effect of the low temperature in cv. Robin was more evident in plants with a relatively small root system (SR), but drought-hardening positively affected the response to CH only in the plants with bigger roots (BR). On the contrary, in cv. New Yorker the favourable effect of such pre-treatment was more evident in SR than in BR plants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号