首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  2021年   2篇
  2016年   1篇
  2014年   3篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   4篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1981年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
1.
Prostaglandins of the E-type (PGE's) were found to react or combine with a urinary metabolite of Halothane yielding products which left unrecovered during the purification procedure preceeding specific radioimmunoassay of PGE2. The products were retained on sephadex LH-20 columns, and showed on thin layer silica gel plates (TLC) Rf values lower than those of the parent PGE-compounds. The product formation is supposed to involve the β-hydroxyketone system of PGE, since PG's of the F and A type were unaffected. The product formation could be avoided by inducing anaesthesia with Hexobarbitone and maintaining the anaesthesia with Halothane-nitrous oxide or it could be reveresed by adding barbiturates to urine samples obtained from animals anaesthetized with Halothane- nitroux oxide alone. The barbiturates effectively competed with PGE for the metabolite leaving PGE to behave normally on sephadex LH-20 and TLC, thus enabling us to evaluate correctly the PGE2 content by RIA.  相似文献   
2.
The aim of the study was to investigate mechanisms underlying the downregulation of renal blood flow (RBF) after a prolonged reduction in renal perfusion pressure (RPP) in adult spontaneously hypertensive rats (SHR). We tested the effect on the RBF response of clamping plasma ANG II in sevoflurane-anesthetized SHR. We also tested the effect of general cyclooxygenase (COX) inhibition and inhibition of the inducible COX-2. Furthermore, we assessed the effect of clamping the nitric oxide (NO) system. A prolonged period (15 min) of reduced RPP induced a downregulation of RBF. This was unchanged after clamping of plasma ANG II concentrations, general COX inhibition, and specific inhibition of COX-2. In contrast, clamping the NO system diminished the ability of SHR to downregulate RBF to a lower level. The downregulation of RBF was not associated with a resetting of the lower limit of autoregulation in the control group, in the ANG II-clamped group, or the NO clamped group. However, general COX inhibition and specific COX-2 inhibition enabled downward resetting of the lower limit of autoregulation. In conclusion, in SHR the renin-angiotensin system does not appear to play a major role in the downregulation of RBF after prolonged reduction of RPP. This response appears to be mediated partly by the NO system. We hypothesize that, in SHR, lack of downward resetting of the lower limit of autoregulation in response to a prolonged lowering of RPP could be the result of increased COX-2-mediated production of vasoconstrictory prostaglandins.  相似文献   
3.
Angiotensins different from ANG II exhibit biological activities, possibly mediated via receptors other than ANG II receptors. We studied the effects of 3-h infusions of ANG III, ANG-(1-7), and ANG IV in doses equimolar to physiological amounts of ANG II (3 pmol. kg-1. min-1), in six men on low-sodium diet (30 mmol/day). The subjects were acutely pretreated with canrenoate and captopril to inhibit aldosterone actions and ANG II synthesis, respectively. ANG II infusion increased plasma angiotensin immunoreactivity to 53 +/- 6 pg/ml (+490%), plasma aldosterone to 342 +/- 38 pg/ml (+109%), and blood pressure by 27%. Glomerular filtration rate decreased by 16%. Concomitantly, clearance of endogenous lithium fell by 66%, and fractional proximal reabsorption of sodium increased from 77 to 92%; absolute proximal reabsorption rate of sodium remained constant. ANG II decreased sodium excretion by 70%, potassium excretion by 50%, and urine flow by 80%, whereas urine osmolality increased. ANG III also increased plasma aldosterone markedly (+45%), however, without measurable changes in angiotensin immunoreactivity, glomerular filtration rate, or renal excretion rates. During vehicle infusion, plasma renin activity decreased markedly ( approximately 700 to approximately 200 mIU/l); only ANG II enhanced this decrease. ANG-(1-7) and ANG IV did not change any of the measured variables persistently. It is concluded that 1) ANG III and ANG IV are cleared much faster from plasma than ANG II, 2) ANG II causes hypofiltration, urinary concentration, and sodium and potassium retention at constant plasma concentrations of vasopressin and atrial natriuretic peptide, and 3) a very small increase in the concentration of ANG III, undetectable by usual techniques, may increase aldosterone secretion substantially.  相似文献   
4.
K(+) conductance is a major determinant of membrane potential (V(m)) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by V(m) through the action of voltage-operated Ca(2+) channels (VOCC) in VSMC. Increased K(+) conductance leads to hyperpolarization and vasodilation, while inactivation of K(+) channels causes depolarization and vasoconstriction. K(+) channels in EC indirectly participate in the control of vascular tone by several mechanisms, e.g., release of nitric oxide and endothelium-derived hyperpolarizing factor. In the kidney, a change in the activity of one or more classes of K(+) channels will lead to a change in hemodynamic resistance and therefore of renal blood flow and glomerular filtration pressure. Through these effects, the activity of renal vascular K(+) channels influences renal salt and water excretion, fluid homeostasis, and ultimately blood pressure. Four main classes of K(+) channels [calcium activated (K(Ca)), inward rectifier (K(ir)), voltage activated (K(V)), and ATP sensitive (K(ATP))] are found in the renal vasculature. Several in vitro experiments have suggested a role for individual classes of K(+) channels in the regulation of renal vascular function. Results from in vivo experiments are sparse. We discuss the role of the different classes of renal vascular K(+) channels and their possible role in the integrated function of the renal microvasculature. Since several pathological conditions, among them hypertension, are associated with alterations in K(+) channel function, the role of renal vascular K(+) channels in the control of salt and water excretion deserves attention.  相似文献   
5.
Gap junctions allow direct intercellular coupling between many cells including those in the vascular wall. Studies of connexin expression in cells of the microcirculatory system are very few in number. However, cell-to-cell communication between cells of the arteriolar wall may be particularly important in microcirculatory control. We investigated the expression of connexins 43, 40, and 37 (Cx43, Cx40, Cx37) mRNA and proteins in primary cultures of smooth muscle cells (SMC) from rat renal preglomerular arterioles and in the aortic cell line A7r5. Furthermore protein expression in preglomerular arterioles in frozen sections was evaluated. SMC were isolated from kidneys using an iron oxide sieve method and explant technique. Total RNA from these cultures was tested by RT-PCR analysis for the expression of the three connexins mRNA. Using immunofluorescence we examined whether the expression pattern of connexin protein in the cell culture and frozen sections corresponded to the mRNA expression. The data show that A7r5 and preglomerular SMC express mRNA for Cx37 in addition to Cx43 and Cx40. In A7r5 cells the mRNA for Cx43, Cx40, and Cx37 are translated to protein, whereas cultured preglomerular SMC and the media of afferent arterioles in frozen sections only showed Cx40 immunoreactivity.  相似文献   
6.
Gαq-stimulation reduces intercellular coupling within 10 min via a decrease in the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2), but the mechanism is unknown. Here we show that uncoupling in rat cardiomyocytes after stimulation of α-adrenergic Gαq-coupled receptors with norepinephrine is prevented by proteasomal and lysosomal inhibitors, suggesting that internalization and possibly degradation of connexin43 (Cx43) is involved. Uncoupling was accompanied by increased Triton X-100 solubility of Cx43, which is considered a measure of the non-junctional pool of Cx43. However, inhibition of the proteasome and lysosome further increased solubility while preserving coupling, suggesting that communicating gap junctions can be part of the soluble fraction. Ubiquitination of Cx43 was also increased, and Cx43 co-immunoprecipitated with the ubiquitin ligase Nedd4. Conclusions: Norepinephrine increases ubiquitination of Cx43 in cardiomyocytes, possibly via Nedd4. We suggest that Cx43 is subsequently internalized, which is preceded by acquired solubility in Triton X-100, which does not lead to uncoupling per se.  相似文献   
7.
Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes. In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs and by interfering with the gating of gap junctional channels.  相似文献   
8.
In vitro, alpha-adrenoreceptor stimulation of rat mesenteric small arteries often leads to a rhythmic change in wall tension, i.e., vasomotion. Within the individual smooth muscle cells of the vascular wall, vasomotion is often preceded by a period of asynchronous calcium waves. Abruptly, these low-frequency waves may transform into high-frequency whole cell calcium oscillations. Simultaneously, multiple cells synchronize, leading to rhythmic generation of tension. We present a mathematical model of vascular smooth muscle cells that aims at characterizing this sudden transition. Simulations show calcium waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium channels on the cell surface, stimulating a synchronized release of SR calcium and inducing the shift from waves to whole cell oscillations. The effect of the channel is therefore to couple the processes of the SR with those of the membrane. We hypothesize that the shift in oscillatory mode and the associated onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion.  相似文献   
9.
Connexins in renal arterioles affect autoregulation of arteriolar tonus and renal blood flow and are believed to be involved in the transmission of the tubuloglomerular feedback (TGF) response across the cells of the juxtaglomerular apparatus. Connexin40 (Cx40) also plays a significant role in the regulation of renin secretion. We investigated the effect of deleting the Cx40 gene on autoregulation of afferent arteriolar diameter in response to acute changes in renal perfusion pressure. The experiments were performed using the isolated blood perfused juxtamedullary nephron preparation in kidneys obtained from wild-type or Cx40 knockout mice. Renal perfusion pressure was increased in steps from 75 to 155 mmHg, and the response in afferent arteriolar diameter was measured. Hereafter, a papillectomy was performed to inhibit TGF, and the pressure steps were repeated. Conduction of intercellular Ca(2+) changes in response to local electrical stimulation was examined in isolated interlobular arteries and afferent arterioles from wild-type or Cx40 knockout mice. Cx40 knockout mice had an impaired autoregulatory response to acute changes in renal perfusion pressure compared with wild-type mice. Inhibition of TGF by papillectomy significantly reduced autoregulation of afferent arteriolar diameter in wild-type mice. In Cx40 knockout mice, papillectomy did not affect the autoregulatory response, indicating that these mice have no functional TGF. Also, Cx40 knockout mice showed no conduction of intercellular Ca(2+) changes in response to local electrical stimulation of interlobular arteries, whereas the Ca(2+) response to norepinephrine was unaffected. These results suggest that Cx40 plays a significant role in the renal autoregulatory response of preglomerular resistance vessels.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号