首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   10篇
  国内免费   18篇
  2024年   1篇
  2022年   6篇
  2021年   6篇
  2020年   4篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   8篇
  2014年   5篇
  2013年   10篇
  2012年   11篇
  2011年   13篇
  2010年   8篇
  2009年   7篇
  2008年   9篇
  2007年   7篇
  2006年   11篇
  2005年   5篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   3篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1972年   2篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
1.
Mean pressures within the lungs and lung volume, respectively, are clinically important parameters. During ventilation by way of high-frequency oscillation (HFO), these parameters have been shown to be strongly frequency dependent. To identify mechanisms leading to mean pressure formation during HFO, findings of the theory of stationary flow were extended to oscillatory flow by a quasi-stationary approach. To confirm the theoretical findings, in-vitro experiments on HFO-models were performed. Flow separation was found to be an important mechanism in the formation of mean pressure. Flow separation causes a significant flow resistance, which may be distinctly different for in- and outflow. During oscillatory flow, a mean pressure difference thus results. This mechanism is of particular importance in bifurcations, which are present in the HFO-circuit as well as in the airways. With the direction-dependent flow separation, a general mechanism was found, which accounts for differing mean pressure values within the lungs with different HFO-circuits. This mechanism also contributes to interregionally different mean pressure values within the lungs.  相似文献   
2.
The complete amino-acid sequence of a neutral proteinase, produced by Bacillus cereus, was determined by protein sequencing. The neutral proteinase consists of 317 amino-acid residues. The primary structure is 70% homologous to thermolysin, a thermostable neutral proteinase and 45% homologous to Bacillus subtilis neutral proteinase. The zinc-binding site and the hydrophobic pocket of the active site are highly similar in all three proteinases. B. cereus neutral proteinase which is 20 degrees C less thermostable (60 degrees C) than thermolysin (80 degrees C) shows only minor differences in calcium binding sites and salt bridges compared to thermolysin (known from its X-ray diffraction analysis), whereas B. subtilis neutral proteinase (50 degrees C) differs considerably. Therefore it was assumed that the difference in thermostability between B. cereus neutral proteinase and thermolysin is not caused by different metal binding properties, or differences in the active site, but by changes within the rest of the molecule. Calculation of secondary structure potentials according to Chou & Fasman, hydrophobicity and bulkiness of the different structural elements and preferred cold----hot amino-acid residue exchanges indicated, that the thermostability of thermolysin compared to B. cereus neutral proteinase is caused by small effects contributed by numerous amino-acid exchanges distributed over the whole molecule, resulting in increased hydrophobicity of beta-pleated sheet and higher bulkiness of alpha-helical regions.  相似文献   
3.
In formulating a mathematical model of the arterial system, the one-dimensional flow approximation yields realistic pressure and flow pulses in the proximal as well as in the distal regions of a simulated arterial conduit, provided that the viscoelastic damping induced by the vessel wall is properly taken into account. Models which are based on a purely elastic formulation of the arterial wall properties are known to produce shocklike transitions in the propagating pulses which are not observed in man under physiological conditions. The viscoelastic damping characteristics are such that they are expected to reduce the tendency of shock formation in the model. In order to analyze this phenomenon, the propagation of first and second-order pressure waves is calculated with the aid of a wave front expansion, and criteria for the formation of shocks are derived. The application of the results to the human arterial system show that shock waves are not to be expected under normal conditions, while in case of a pathologically increased pressure rise at the root of the aorta, shocklike transitions may develop in the periphery. In particular, it is shown that second-order waves never lead to shock formation in finite time for the class of initial conditions and mechanical wave guides which are of interest in the mammalian circulation.  相似文献   
4.
After disulphide bonds are reduced with dithiothreitol, trans-3- (α-bromomethyl)-3’-[α- (trimethylammonium)methyl]azobenzene (trans-QBr) alkylates a sulfhydryl group on receptors. The membrane conductance induced by this “tethered agonist” shares many properties with that induced by reversible agonists. Equilibrium conductance increases as the membrane potential is made more negative; the voltage sensitivity resembles that seen with 50 [mu]M carbachol. Voltage- jump relaxations follow an exponential time-course; the rate constants are about twice as large as those seen with 50 μM carbachol and have the same voltage and temperature sensitivity. With reversible agonists, the rate of channel opening increases with the frequency of agonist-receptor collisions: with tethered trans-Qbr, this rate depends only on intramolecular events. In comparison to the conductance induced by reversible agonists, the QBr-induced conductance is at least 10-fold less sensitive to competitive blockade by tubocurarine and roughly as sensitive to “open-channel blockade” bu QX-222. Light-flash experiments with tethered QBr resemble those with the reversible photoisomerizable agonist, 3,3’,bis-[α-(trimethylammonium)methyl]azobenzene (Bis-Q): the conductance is increased by cis {arrow} trans photoisomerizations and decreased by trans {arrow} cis photoisomerizations. As with Bis-Q, ligh-flash relaxations have the same rate constant as voltage-jump relaxations. Receptors with tethered trans isomer. By comparing the agonist-induced conductance with the cis/tans ratio, we conclude that each channel’s activation is determined by the configuration of a single tethered QBr molecule. The QBr-induced conductance shows slow decreases (time constant, several hundred milliseconds), which can be partially reversed by flashes. The similarities suggest that the same rate-limiting step governs the opening and closing of channels for both reversible and tethered agonists. Therefore, this step is probably not the initial encounter between agonist and receptor molecules.  相似文献   
5.
In a three-hour bioassay, we tested the palatability and feeding preferences of Uresiphita maorialis (kōwhai moth) for Sophora tetraptera, Sophora microphylla and Sophora prostrata. Palatability tests showed no differences among the Sophora species. Feeding preferences, on the other hand, showed that S. tetraptera and S. microphylla leaves are preferred over S. prostrata leaves. Our results support our field observations in Wellington city parks and gardens showing that S. tetraptera and S. microphylla plants frequently have higher densities of larvae than S. prostrata.  相似文献   
6.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
7.
Aquaculture practices from sub-Saharan Africa are characterised by low production, owing to improper technology. Production can be increased through integrating fish farming with other existing on-farm activities, particularly livestock husbandry. We assessed the role of fish-poultry integration on all male Nile tilapia, Oreochromis niloticus growth performance, yields and economic benefits among smallholder farmers in sub-Saharan Africa, Tanzania. The study also compared phytoplankton species composition, abundance and biomass between the fish-poultry integration and non-integrated system. After 180 days of the experiment, all male O. niloticus cultured under fish-poultry integration exhibited significantly higher growth rates than those in the non-integrated system (p < 0.05). Gross fish yield (GFY), net fish yield (NFY) and net annual yields (NAY) obtained from fish-poultry integration were significantly higher than those from non-integrated system (p < 0.05). Partial enterprise budget analysis revealed that fish-poultry integration was more profitable than the non-integrated system. Moreover, fish-poultry integrated system produced significantly higher phytoplankton abundance and biomass than those from the non-integrated system. Results demonstrate that rural smallholder farmers can achieve higher growth rate, farm net yields and income by integrating all male O. niloticus with other on-farm activities than practising a stand-alone fish culture system.  相似文献   
8.
Focal sources (FS) are believed to be important triggers and a perpetuation mechanism for paroxysmal atrial fibrillation (AF). Detecting FS and determining AF sustainability in atrial tissue can help guide ablation targeting. We hypothesized that sustained rotors during FS-driven episodes indicate an arrhythmogenic substrate for sustained AF, and that non-invasive electrical recordings, like electrocardiograms (ECGs) or body surface potential maps (BSPMs), could be used to detect FS and AF sustainability. Computer simulations were performed on five bi-atrial geometries. FS were induced by pacing at cycle lengths of 120–270 ms from 32 atrial sites and four pulmonary veins. Self-sustained reentrant activities were also initiated around the same 32 atrial sites with inexcitable cores of radii of 0, 0.5 and 1 cm. FS fired for two seconds and then AF inducibility was tested by whether activation was sustained for another second. ECGs and BSPMs were simulated. Equivalent atrial sources were extracted using second-order blind source separation, and their cycle length, periodicity and contribution, were used as features for random forest classifiers. Longer rotor duration during FS-driven episodes indicates higher AF inducibility (area under ROC curve = 0.83). Our method had accuracy of 90.6±1.0% and 90.6±0.6% in detecting FS presence, and 93.1±0.6% and 94.2±1.2% in identifying AF sustainability, and 80.0±6.6% and 61.0±5.2% in determining the atrium of the focal site, from BSPMs and ECGs of five atria. The detection of FS presence and AF sustainability were insensitive to vest placement (±9.6%). On pre-operative BSPMs of 52 paroxysmal AF patients, patients classified with initiator-type FS on a single atrium resulted in improved two-to-three-year AF-free likelihoods (p-value < 0.01, logrank tests). Detection of FS and arrhythmogenic substrate can be performed from ECGs and BSPMs, enabling non-invasive mapping towards mechanism-targeted AF treatment, and malignant ectopic beat detection with likely AF progression.  相似文献   
9.
10.
Interstitial fluid flow through the lacunocanalicular cavities of mechanically loaded bone provides the biophysical basis for a number of postulates regarding mechanotransduction in bone. Recently, the existence of load-induced fluid flow and its influence on molecular transport through bone has been confirmed using tracer methods to visualize fluid flow induced by in vivo four-point-bending of rat tibiae. In this paper, we present a theoretical two-stage approach for the calculation of load-induced flow fields and for the evaluation of their influence on molecular transport in bone loaded in four-point bending, analogous to the aforementioned experimental model. In the first stage, the fluid velocities are calculated using a three-dimensional, poroelastic finite element model. In the second stage, mass transport analysis, this calculated fluid flow serves as a forced convection flow and its contribution to the total transport potential is determined. Based on this combined approach, the overall tracer concentration in the loaded bone is significantly higher than that in the unloaded bone. Furthermore, augmentation of mass transport through convective flow is more pronounced in the tension band of the tissue, as compared to the compression band. In general, augmentation of tracer concentration via convective mechanisms is most pronounced in areas corresponding to lowest fluid velocities, which is indicative of fluid flow direction and areas of increased "dwell time" or accumulation during the loading cycle. This theoretical model, in combination with the corresponding experimental model, provides unique insight into the role of mechanical loads in modulating local flow distributions and concentration gradients within bone tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号