首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   9篇
  2022年   1篇
  2021年   3篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
2.
Metabolic control of gene expression coordinates the levels of specific gene products to meet cellular demand for their activities. This control can be exerted by metabolites acting as regulatory signals and/or a class of metabolic enzymes with dual functions as regulators of gene expression. However, little is known about how metabolic signals affect the balance between enzymatic and regulatory roles of these dual functional proteins. We previously described the RNA binding activity of a 63 kDa chloroplast protein from Chlamydomonas reinhardtii, which has been implicated in expression of the psbA mRNA, encoding the D1 protein of photosystem II. Here, we identify this factor as dihydrolipoamide acetyltransferase (DLA2), a subunit of the chloroplast pyruvate dehydrogenase complex (cpPDC), which is known to provide acetyl-CoA for fatty acid synthesis. Analyses of RNAi lines revealed that DLA2 is involved in the synthesis of both D1 and acetyl-CoA. Gel filtration analyses demonstrated an RNP complex containing DLA2 and the chloroplast psbA mRNA specifically in cells metabolizing acetate. An intrinsic RNA binding activity of DLA2 was confirmed by in vitro RNA binding assays. Results of fluorescence microscopy and subcellular fractionation experiments support a role of DLA2 in acetate-dependent localization of the psbA mRNA to a translation zone within the chloroplast. Reciprocally, the activity of the cpPDC was specifically affected by binding of psbA mRNA. Beyond that, in silico analysis and in vitro RNA binding studies using recombinant proteins support the possibility that RNA binding is an ancient feature of dihydrolipoamide acetyltransferases. Our results suggest a regulatory function of DLA2 in response to growth on reduced carbon energy sources. This raises the intriguing possibility that this regulation functions to coordinate the synthesis of lipids and proteins for the biogenesis of photosynthetic membranes.  相似文献   
3.
4.
The psbD mRNA, which encodes the D2 reaction center polypeptide of photosystem II, is one of the most abundant chloroplast mRNAs. We have used genomic complementation to isolate the nuclear Nac2 gene, which is required for the stable accumulation of the psbD mRNA in Chlamydomonas reinhardtii. Nac2 encodes a hydrophilic polypeptide of 1385 amino acids with nine tetratricopeptide-like repeats (TPRs) in its C-terminal half. Cell fractionation studies indicate that the Nac2 protein is localized in the stromal compartment of the chloroplast. It is part of a high molecular weight complex that is associated with non-polysomal RNA. Change of a conserved alanine residue of the fourth TPR motif by site-directed mutagenesis leads to aggregation of Nac2 protein and completely abrogates its function, indicating that this TPR is important for proper folding of the protein and for psbD mRNA stability, processing and/or translation.  相似文献   
5.
We have investigated the location of the Psb27 protein and its role in photosystem (PS) II biogenesis in the cyanobacterium Synechocystis sp. PCC 6803. Native gel electrophoresis revealed that Psb27 was present mainly in monomeric PSII core complexes but also in smaller amounts in dimeric PSII core complexes, in large PSII supercomplexes, and in the unassembled protein fraction. We conclude from analysis of assembly mutants and isolated histidine-tagged PSII subcomplexes that Psb27 associates with the "unassembled" CP43 complex, as well as with larger complexes containing CP43, possibly in the vicinity of the large lumenal loop connecting transmembrane helices 5 and 6 of CP43. A functional role for Psb27 in the biogenesis of CP43 is supported by the decreased accumulation and enhanced fragmentation of unassembled CP43 after inactivation of the psb27 gene in a mutant lacking CP47. Unexpectedly, in strains unable to assemble PSII, a small amount of Psb27 comigrated with monomeric and trimeric PSI complexes upon native gel electrophoresis, and Psb27 could be copurified with histidine-tagged PSI isolated from the wild type. Yeast two-hybrid assays suggested an interaction of Psb27 with the PsaB protein of PSI. Pull-down experiments also supported an interaction between CP43 and PSI. Deletion of psb27 did not have drastic effects on PSII assembly and repair but did compromise short-term acclimation to high light. The tentative interaction of Psb27 and CP43 with PSI raises the possibility that PSI might play a previously unrecognized role in the biogenesis/repair of PSII.  相似文献   
6.
In the cyanobacterium Synechocystis sp PCC 6803, early steps in thylakoid membrane (TM) biogenesis are considered to take place in specialized membrane fractions resembling an interface between the plasma membrane (PM) and TM. This region (the PratA-defined membrane) is defined by the presence of the photosystem II (PSII) assembly factor PratA (for processing-associated TPR protein) and the precursor of the D1 protein (pD1). Here, we show that PratA is a Mn(2+) binding protein that contains a high affinity Mn(2+) binding site (K(d) = 73 μM) and that PratA is required for efficient delivery of Mn(2+) to PSII in vivo, as Mn(2+) transport is retarded in pratA(-). Furthermore, ultrastructural analyses of pratA(-) depict changes in membrane organization in comparison to the wild type, especially a semicircle-shaped structure, which appears to connect PM and TM, is lacking in pratA(-). Immunogold labeling located PratA and pD1 to these distinct regions at the cell periphery. Thus, PratA is necessary for efficient delivery of Mn(2+) to PSII, leading to Mn(2+) preloading of PSII in the periplasm. We propose an extended model for the spatial organization of Mn(2+) transport to PSII, which is suggested to take place concomitantly with early steps of PSII assembly in biogenesis centers at the cell periphery.  相似文献   
7.
8.
The chloroplast tscA gene from Chlamydomonas reinhardtii encodes a co-factor RNA that is involved in trans-splicing of exons 1 and 2 of the psaA mRNA encoding a core polypeptide of photosystem I. Here we provide molecular and genetic characterization of the trans-splicing mutant TR72, which is defective in the 3'-end processing of the tscA RNA and consequently defective in splicing exons 1 and 2 of the psaA mRNA. Using genomic complementation, two adjacent nuclear genes were identified, Rat1 and Rat2, that are able to restore the photosynthetic growth of mutant TR72. Restoration of the photosynthesis phenotype, however, was successful only with a DNA fragment containing both genes, while separate use of the two genes did not rescue the wild-type phenotype. This was further confirmed by using a set of 10 gene derivatives in complementation tests. The deduced amino acid sequence of Rat1 shows significant sequence homology to the conserved NAD+-binding domain of poly(ADP-ribose) polymerases of eukaryotic organisms. However, mutagenesis of conserved residues in this putative NAD+-binding domain did not reveal any effect on restoration efficiency. Immunodetection analyses with enriched fractions of chloroplast proteins indicated that Rat1 is associated with chloroplast membranes. Using the yeast three-hybrid system, we were able to demonstrate the specific binding of tscA RNA by the Rat1 polypeptide. We propose that the two nuclear factors Rat1 and Rat2 are involved in processing of chloroplast tscA RNA and in subsequent splicing of psaA exons 1 and 2.  相似文献   
9.
10.
Early steps in the biogenesis of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803 are thought to occur in a specialized membrane fraction that is characterized by the specific accumulation of the PSII assembly factor PratA and its interaction partner pD1, the precursor of the D1 protein of PSII. Here, we report the molecular characterization of this membrane fraction, called the PratA-defined membrane (PDM), with regard to its lipid and pigment composition and its association with PSII assembly factors, including YCF48, Slr1471, Sll0933, and Pitt. We demonstrate that YCF48 and Slr1471 are present and that the chlorophyll precursor chlorophyllide a accumulates in the PDM. Analysis of PDMs from various mutant lines suggests a central role for PratA in the spatial organization of PSII biogenesis. Moreover, quantitative immunoblot analyses revealed a network of interdependences between several PSII assembly factors and chlorophyll synthesis. In addition, formation of complexes containing both YCF48 and Sll0933 was substantiated by co-immunoprecipitation experiments. The findings are integrated into a refined model for PSII biogenesis in Synechocystis 6803.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号