首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  1998年   2篇
  1988年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Plants of Sorghum bicolor (C4 species) were grown at different nitrate or ammonium concentrations (0.5, 5, 20 and 50 mM) in order to examine the effect of nitrogen nutrition on growth, phosphoenolpyruvate carboxylase (PEPC) and antioxidant enzymes activities in both roots and leaves of 30-day-old plants. At high NO3? levels (20 and 50 mM) the fresh weight was significantly higher. When the nitrogen source was in ammonium form, the leaf and root mass increased drastically at low concentration 5 mM and significantly at 20 mM, however similar fresh weight was found at high level of ammonium (50 mM). The leaves catalase (CAT), guaiacol peroxidase (POD), glutathione reductase (GR), and glutathione S-transferase (GST) activities and the roots glutathione reductase and glutathione S-transferase activities were significantly higher in the NH4+-fed plants than those grown in the nitrate medium. Activity and proteins levels of phosphoenolpyruvate carboxylase in both leaves and roots of sorghum plants were increased progressively with increasing external nitrogen concentration. This increase was more pronounced at high level of ammonium (50 mM), being 2-fold at 50 mM of NO3? and 3-fold at 50 mM of NH4+. Our results suggested that antioxidant enzymes activities and PEPC play a key role in ammonium detoxification and tolerance in sorghum plants.  相似文献   
2.
2,3-Diaminopropionic acid (Dap) and N-terminal Dap peptides have been found to inhibit in vitro protein-modifications by methylglyoxal (MG), one of the highly reactive α-dicarbonyl compounds. MG scavenging potency of the newly synthesized N-terminal Dap peptides is demonstrated by RP-HPLC, SDS–PAGE and non-denaturing PAGE analysis, assays for enzymatic activity and cell viability study and was compared with that of known AGE inhibitors, such as aminoguanidine, pyridoxamine, metformin and carnosine. Two addition products of MG and l-Dap-l-Leu are separated by HPLC and their chemical structures are characterized by 1H and 13C NMR spectroscopy to indicate that both of them are pyrazines derived from 2 molecules of MG and 1 molecule of l-Dap-l-Leu. Mutagenic activities of l-Dap-l-Leu and l-Dap-l-Val and their metabolites according to the Ames assay are found to be negative.  相似文献   
3.
Kinetic analyses were performed on the nonphosphorylated and in vitro phosphorylated forms of recombinant Sorghum C4 phospho enolpyruvate carboxylase (C4 PEPC). The native enzyme was purified by immunoaffinity chromatography and its integrity demonstrated by Western blot analyses using anti N- and C-terminus antibodies. At suboptimal pH (7.1 to 7.3) and PEP concentration (2.5 mM), phosphorylation, positive metabolite effectors e.g., glucose-6-phosphate, glycine and dihydroxyacetone-phosphate, or an increase in pH strongly activated the enzyme and lowered the inhibitory effect of L-malate. C4 PEPC phosphorylation strengthened the effect of the positive effectors thereby decreasing further the enzyme's sensitivity to this inhibitor. L-malate also decreased the phosphorylation rate of C4 PEPC, a process antagonized by positive metabolite effectors. This was shown both in vitro, in a reconstituted phosphorylation assay containing the catalytic subunit of a cAMP-dependent protein kinase or the Sorghum leaf PEPC-PK and in situ, during induction of C4 PEPC phosphorylation in mesophyll cell protoplasts.  相似文献   
4.
Sorghum (Sorghum bicolor (L.) Moench) is a species of great socio-economic and ecological importance for countries in arid and semi-arid climate. In C4 plants like sorghum, phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) plays a key role in seed development and germination. In this work, the PEPC activity shows an increase followed by a decrease at the early and later stages of maturation, respectively. In germinating seeds, the PEPC activity quickly increases after soaking. The L-malate test and the ratio of PEPC activity determined at pH 8.0 and 7.1, indicates, that PEPC is phosphorylated at the early stages of maturation then becomes dephosphorylated at the later stages and during seed germination, PEPC takes back its phosphorylated form. The determination of the affinity constant showed different KM depending on the seed developmental stage. As there is no PEPC-C4 isoform in developing sorghum seeds, this result indicates that the different KM observed during seed maturation could be a result of a post-translational regulation such as phosphorylation or ubiquitination of a pre-existing isoform. This regulation enhances the PEPC activity at early stages of seed development.  相似文献   
5.
The ATPase activity of Catharanthus roseus tonoplasts was examined using HPLC separation and quantification of adenine nucleotides. ATP seemed to be degraded into ADP and AMP by tonoplast vesicles. When ADP was the initial substrate, the appearance of AMP and concomitant ATP synthesis were observed; these reactions were inhibited by Ap5A. The apparent degradation of ATP into AMP was also inhibited by Ap5A. These results indicated that AMP arose from an ATP:AMP phosphotransferase activity and excluded the possibility of the hydrolysis of ADP into AMP by the tonoplast ATPase. AMP was degraded by the microsomal fraction from protoplasts or by the cytosol while the tonoplast vesicles did not hydrolyze it. This observation was used to assess the purity of tonoplasts.  相似文献   
6.
The effects of Maneb on antioxidant potentials and carbon assimilation were studied in leaves sorghum (Sorghum bicolor L.) plants (C4 species). The plants were sprayed by three doses; recommended dose (2.5 g/L), twice and three times higher at 25, 40 and 55 days after planting (DAP). The leaves were harvested at 5, 10 and 15 days after treatment (DAT) and proteins content, activities of antioxidative enzymes catalase (CAT), guaiacol peroxidase (POD), glutathione reductase (GR), glutathione-S-transferases (GST) and glyoxalase I (GlyI) as well as activity of key enzyme in primary fixation of atmospheric CO2 phosphoenolpyruvate carboxylase (PEPC) and chlorophyll content were estimated. The protein content was found increased under Maneb treatment. While the POD and GR activities appear unaffected, CAT activity increased at 10 and 15 DAT. Whereas the GST activity increased significantly in plants treated with 5 g/L at 5 DAT and in plant exposed to 2.5 g/L at 10 DAT. The activity and proteins levels of GlyI were increased progressively with increasing fungicide treatment. This increase was more pronounced at 5 DAT; being 1.7 and 1.5 fold for 5 and 7.5 g/L, respectively. However, both PEPC activity and chlorophyll content seem unchanged in presence of fungicide even at high concentration. These results indicate that sorghum leaves have a well-developed systems of protection from carbonyl stress.  相似文献   
7.
Calcium-dependent phosphoenolpyruvate carboxylase protein kinasewas copurified with C4 phosphoenolpyruvate carboxylase (C4 PEPC)from illuminated Sorghum leaves during purification by variousprocedures. Isolated mesophyll cell protoplasts contained bothcalcium-dependent and -independent protein kinases. The latterwas induced by light and weak bases and was found to be themajor protein kinase phosphorylating C4 PEPC in the mesophyll. (Received July 29, 1997; Accepted November 28, 1997)  相似文献   
8.
9.
Icosahedral capsids of viruses are lattices of defined geometry and homogeneous size. The (quasi-)equivalent organization of their protein building blocks provides, in numerous systems, the binding sites to assemble arrays of viral polypeptides organized with nanometer precision that protrude from the capsid surface. The capsid of bacterial virus (bacteriophage) SPP1 exposes, at its surface, the 6.6-kDa viral polypeptide gp12 that binds to the center of hexamers of the major capsid protein. Gp12 forms an elongated trimer with collagen-like properties. This is consistent with the fold of eight internal GXY repeats of gp12 to build a stable intersubunit triple helix in a prokaryotic setting. The trimer dissociates and unfolds at near physiological temperatures, as reported for eukaryotic collagen. Its structural organization is reacquired within seconds upon cooling. Interaction with the SPP1 capsid hexamers strongly stabilizes gp12, increasing its Tm to 54 °C. Above this temperature, gp12 dissociates from its binding sites and unfolds reversibly. Multivalent binding of gp12 trimers to the capsid is highly cooperative. The capsid lattice also provides a platform to assist folding and association of unfolded gp12 polypeptides. The original physicochemical properties of gp12 offer a thermoswitchable system for multivalent binding of the polypeptide to the SPP1 capsid surface.  相似文献   
10.
Russian Journal of Plant Physiology - The first part of this work consists in the identification of a prokaryotic-type bifunctional enzyme (aspartate aminotransferase, PT-AAT) in photosynthetic...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号