首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2021年   2篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2002年   3篇
  2001年   1篇
  1997年   1篇
排序方式: 共有18条查询结果,搜索用时 171 毫秒
1.

Background  

Migraine is a significant health problem, especially for the young people, due to its frequency and accompanying morbidity, causing disability and loss of performance. In this study, our aim was to determine the prevalence of migraine headaches among university students in Edirne, a Turkish city.  相似文献   
2.
3.
Glioblastoma (GBM) is the most common and aggressive intraparenchymal primary brain tumor in adults. The principal reasons for the poor outcomes of GBM are the high rates of recurrence and resistance to chemotherapy. The aim of this study was to determine the role of tailored cellular therapy for GBM with a poor prognosis and compare the activity of dendritic cells (DCs) that have encountered GBM cells. Detecting the correlations between methylation and expression of MGMT and PTEN genes and GBM cancer stem cells (CSCs) markers after co-cultures with a mononuclear cell cocktail are also aims for this study. Allogenic umbilical cord blood (UCB)-derived DCs were labeled with the CD11a and CD123 for immature DCs, and CD80 and CD11c for mature DCs. CD34, CD45, and CD56 cells were isolated from allogenic UCB for using in DCs maturation. GBM CSCs were detected with CD133/1 and CD111 antibodies after co-culture studies. DC activation was carried out via GBM cells including CD133 and CD111 cells and a mononuclear cells cocktail including CD34, CD45, and CD56 natural killer cells. Real-time PCR was performed to detect the expression and promoter methylation status of PTEN and MGMT genes. The expression of CSCs markers was found in all GBM cases, and a statistically significant correlation was found among them after co-culture studies. The most pronounced affinity of DCs to GBM cells was observed at dilutions between 1/4 and 1/256 in co-cultures. There was a statistically significant correlation between cellularity and granularity ratios for CD123 and CD11c. PTEN and MGMT gene expression and methylation values were evaluated with respect to CSCs expression and no statistical significance was found. Activation of DCs might associate with CSCs and the mononuclear cells cocktail including CD34, CD45, and CD56 cells which were obtained from allogenic UCB.  相似文献   
4.
Color and texture match is crucial in reconstruction of facial tissue defects. Between March of 1997 and July of 2000, island flaps based on the parietal, anterofrontal, centrofrontal, posterofrontal, and superior auricular branches of the superficial temporal artery were used in the reconstruction of tissue defects localized on different regions of the face in 28 patients. According to the size and the location of the defect, the flap was selected. There were 15 male patients and 13 female patients, with ages ranging between 19 and 74 years. In six of the flaps, venous congestion was observed. Because of the elevation of the eyebrow on the flap side, three patients required a sling to the opposite eyebrow. Excellent color and tissue match and transfer of hair-bearing tissue to the eyebrow and beard areas were achieved with no other complications. Satisfactory aesthetic results were gained.  相似文献   
5.
6.
 The protein-coding sequences of the major histocompatibility complex (MHC) genes are characterized by extraordinarily high polymorphism, apparently maintained by balancing selection, which favors diversity in the peptide-binding domains of the MHC glycoproteins. Here we report that the introns flanking the polymorphic exons of the human MHC class I loci HLA-A, -B, and -C genes have been relatively conserved and have become locus-specific apparently as a result of recombination and subsequent genetic drift, leading to homogenization within loci over evolutionary time. Thus, HLA class I genes have been shaped by contrasting evolutionary forces maintaining polymorphism in the exons and leading to conservation in the introns. This study provides the first extensive analysis of the introns of a highly polymorphic gene family. Received: 10 April 1997 / Revised: 15 July 1997  相似文献   
7.
We report on the numerically and analytically investigated plasmonic and photothermal responses of a nanomatryushka structure composed of silver concentric nanoshells which exhibited strong plasmon resonance localization in the optical frequencies. Illuminating an isolated silver nanomatryushka in an aqueous system, we calculated the photothermal response of the structure and quantified the absorbed optical power and generated photothermal heat. In addition, it is shown that a couple of nanomatryushka structures as a symmetric molecular dimer in weak and strong coupling regimes are able to support strong plasmon resonances in the visible to the near-infrared region. Utilizing strong near-field coupling in the metallic nanostructures and hybridization of plasmons, and also employing silver as a highly absorptive material at the visible spectrum, we increased the energy dissipation per unit volume almost three orders of magnitude in comparison to the other analogous subwavelength structures. Employing numerical methods, we showed that a symmetric metallic nanomatryushka dimer is able to generate enough photothermal heat which could result in a remarkable amount of temperature change (ΔT?=?140 K) at the picosecond time scale. According to hybridization theory, the symmetric dimer is able to support strong bonding and antibonding plasmon resonant modes. Utilizing concentric nanoshells with high geometrical tunability facilitates using all of the surfaces and center of nanoparticles to generate heat with a large temperature change within a short relaxation time. This understanding opens new avenues to utilize simple nanoparticle orientations to generate significant heat power in an extremely short time scale for cancer therapy, photothermal therapy, and biological applications.  相似文献   
8.
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号