首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   3篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   7篇
  2019年   2篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   10篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1984年   1篇
排序方式: 共有80条查询结果,搜索用时 46 毫秒
1.
The present study aimed to examine the phenolic content and evaluate the antimicrobial and antioxidant potential of ethanol extracts from the moss species Phyllogonium viride Brid. on the pathogenic bacteria Salmonella enterica serovar enteritidis, Staphylococcus aureus, Listeria monocytogenes and Escherichia coli, and the pathogenic fungi Candida albicans and Cryptococcus neoformans. The antimicrobial activity was determined from Minimum Inhibitory Concentration (MIC) Minimum Bactericidal Concentration (MBC) and Minimum Fungicidal Concentration (MFC). Antioxidant activity was determined by the DPPH method. Folin-Denis reagent was used for the content of total phenolics and flavonoids and HPLC-DAD for identification of phenolic compounds. The results showed that bacteriostatic and bactericidal activities occurred at concentrations ranging from 9.76 μg/mL–78.13 μg/mL among all evaluated microorganisms. These values, considering the criteria used, suggest the P. viride extract as a potent antimicrobial. For antioxidant activity, P. viride extract was considered weak. Analysis of the phenolic content showed a wide range of compounds, with Kaempferol (0.41 mg/g) being the major compound, followed by t-cinnamic acid and caffeic acid (0.17 mg/g). Although P. viride is a species of moss not yet referenced in scientific publications of biotechnological interest, it has shown promising potential for further studies and possible application as an antimicrobial of natural origin.  相似文献   
2.
McCreadie  John W.  Hamada  Neusa  Grillet  Maria E.  Adler  Peter H. 《Hydrobiologia》2021,848(4):811-823
Hydrobiologia - Beta diversity typically increases with decreasing latitude, with explanations of this pattern often based on tropical origins of most clades. Black flies (Diptera: Simuliidae) are...  相似文献   
3.

Background

Schistosomiasis has a considerable impact on public health in many tropical and subtropical areas. In the new world, schistosomiasis is caused by the digenetic trematode Schistosoma mansoni. Chemotherapy is the main measure for controlling schistosomiasis, and the current drug of choice for treatment is praziquantel (PZQ). Although PZQ is efficient and safe, its repetitive large-scale use in endemic areas may lead to the selection of resistant strains. Isolates less susceptible to PZQ have been found in the field and selected for in the laboratory. The impact of selecting strains with a decreased susceptibility phenotype on disease dynamics and parasite population genetics is not fully understood. This study addresses the impact of PZQ pressure on the genetics of a laboratory population by analyzing frequency variations of polymorphic genetic markers.

Methodology

Infected mice were treated with increasing PZQ doses until the highest dose of 3×300 mg/Kg was reached. The effect of PZQ treatment on the parasite population was assessed using five polymorphic microsatellite markers. Parasitological and genetic data were compared with those of the untreated control. After six parasite generations submitted to treatment, it was possible to obtain a S. mansoni population with decreased susceptibility to PZQ. In our experiments we also observed that female worms were more susceptible to PZQ than male worms.

Conclusions

The selective pressure exerted by PZQ led to decreased genetic variability in S. mansoni and increased endogamy. The understanding of how S. mansoni populations respond to successive drug pressure has important implications on the appearance and maintenance of a PZQ resistance phenotype in endemic regions.  相似文献   
4.
Seed physiology of wild species has not been studied as deeply as that of domesticated crop species. Trichocline catharinensis (Asteraceae) is an endemic wildflower species from the high-altitude fields of southern Brazil. This species is of interest as a source of genes to improve cultivated Asteraceae because of its ornamental features, disease resistance and ability to tolerate drought and poor soil conditions. We studied the effects of abscisic acid (ABA) and gibberellic acid (GA3) and their inhibitors, fluridone (FLU) and paclobutrazol (PAC), on seed germination. We individually assessed ultrastructural changes and differential protein accumulation. The principal component analysis explained 69.66% of differential accumulation for 32 proteins at phase II of seed germination in response to hormone and inhibitor treatment. GA3-imbibed seed germination (98.75%) resulted in increased protein accumulation to meet energy demand, redox regulation, and reserve metabolism activation. FLU-imbibed seeds showed a higher germination speed index as a consequence of metabolism activation. ABA-imbibed seeds (58.75%) showed osmotolerance and flattened cells in the hypocotyl-radicular axis, suggesting that ABA inhibits cell expansion. PAC-imbibed seeds remained at phase II for 300 h, and germination was suppressed (7.5%) because of the increased signaling proteins and halted reserve mobilization. Therefore, our findings provide insight into the behavior of Asteraceae non-dormant seed germination, which broadens our knowledge of seed germination in a wild and endemic plant species from a threatened ecosystem.  相似文献   
5.
Plant Cell, Tissue and Organ Culture (PCTOC) - Mambalgin-1 is a peptide that acts as a potent analgesic through inhibiting acid-sensing ion channels (ASIC) in nerve cells. Research has shown that...  相似文献   
6.
Polyamines (PAs) are abundant polycationic compounds involved in many physiological processes in plants, including somatic embryogenesis. This study investigates the role of PAs on cellular growth and structure of pro‐embryogenic masses (PEMs), endogenous PA and proton pump activities in embryogenic suspension cultures of Araucaria angustifolia. The embryogenic suspension cultures were incubated with putrescine (Put), spermidine (Spd), spermine (Spm) and the inhibitor methylglyoxal‐bis(guanylhydrazone) (MGBG), respectively (1 mM). After 24 h and 21 days, the cellular growth and structure of PEMs, endogenous PA contents and proton pump activities were analyzed. The addition of Spm reduced the cellular growth and promoted the development of PEMs in embryogenic cultures, which could be associated with a reduction in the activities of proton pumps, such as H+‐ATPase P‐ and V‐types and H+‐PPases, and alterations in the endogenous PA contents. Spm significantly affected the physiology of the A. angustifolia somatic embryogenesis suspension, as it potentially affects cellular growth and structure of PEMs through the modulation of proton pump activities. This work demonstrates the involvement of exogenous PAs in the modulation of cellular growth and structure of PEMs, endogenous PA levels and proton pump activities during somatic embryogenesis. To our knowledge, this study is the first to report a relationship between PAs and proton pump activities in these processes. The results obtained in this study offer new perspectives for studies addressing the role of PAs and proton pump on somatic embryogenesis in this species.  相似文献   
7.
We evaluated the impact of low pH and aluminum (Al) on the leaves and roots of Plantago almogravensis Franco and Plantago algarbiensis Samp., focusing on energy partitioning in photosystem II, H2O2 levels, lipid peroxidation, electrolyte leakage (EL), protein oxidation, total soluble protein content and antioxidant enzyme activities. In both species, Al triggered more changes in oxidative metabolism than low pH alone, particularly in the roots. We found that Al increased the levels of H2O2 in P. algarbiensis roots, but reduced the levels of H2O2 in P. almogravensis leaves and roots. Neither low pH nor Al affected the spatial heterogeneity of chlorophyll fluorescence, the maximum photochemical efficiency of PSII (Fv/Fm), the actual quantum efficiency of PSII (?PSII) or the quantum yields of regulated (?NPQ) and nonregulated (?NO) energy dissipation, and there was no significant change in total soluble protein content and EL. In P. algarbiensis, Al increased the carbonyl content and the activities of superoxide dismutase (SOD) and catalase (CAT) in the roots, and also CAT, ascorbate peroxidase and guaiacol peroxidase activities in the leaves. In P. almogravensis, Al reduced the level of malondialdehyde in the roots as well as SOD activity in the leaves and roots. We found that P. almogravensis plantlets could manage the oxidative stress caused by low pH and Al, whereas the P. algarbiensis antioxidant system was unable to suppress Al toxicity completely, leading to the accumulation of H2O2 and consequential protein oxidation in the roots.  相似文献   
8.
9.
Dehydroepiandrosterone (DHEA) exerts multiple effects in the central nervous system. Most of them seem to be mediated through their nongenomic actions on neurotransmitter receptors, and these actions occur within seconds or milliseconds. DHEA increases neuronal excitability, enhances neuronal plasticity, and has neuroprotective properties. By investigating glutamate release from synaptosomes of rats at different ages (from 17 days to 12 months), we observed that (i) there is an increase in basal and K(+)-stimulated L-[3H] glutamate release in rats at 12 months old, when compared to other ages; and (ii) there is an inhibitory effect of DHEA on basal L-[3H] glutamate release in 12 months old. This inhibitory effect of DHEA could be related to its reported protective role against excitotoxicity caused by overstimulation of the glutamatergic system and ageing.  相似文献   
10.
In the present work murine thymocytes exposed to Thapsigargin (TG 10, 20 and 50 nM), Phorbol-12,13,20-triacetate (TPA16 nM) and Ouabain (OUA100 nM) exhibited an increased expression of CD69, a molecule related to cellular activation and associated to Ca(++) influx in other systems. The kinetics of CD69 appearance depended on the stimuli and dose used. TG 50 nM induced an increased expression by 6 h whereas with lower doses (10 and 20 nM) an increase was detected at 18 h. TPA maximal increase was evident at 6 h. OUA lead to an observable increase at 18 h. However, in the case of TPA or TG the presence of the stimuli was only necessary for the first 2 h of culture, whereas OUA needed to be present during the whole assay. It was also demonstrated that Ca(++) influx was an essential feature, as EGTA diminished or abolished CD69 increased expression. Nevertheless, EGTA was only capable of this effect when present at the time of the stimuli. No correlation of CD69 expression with thymocyte death was observed. Similarly, the agents under study did not promote the maturation from double-positive into single-positive thymocytes. TPA and Thapsigargin were capable of decreasing the level of CD4 molecules on the cell surface, probably due to the loss of these molecules. OUA, on the other hand, did not modify CD4/CD8 expression on these cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号