首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   5篇
  101篇
  2018年   1篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   3篇
  2012年   8篇
  2011年   7篇
  2010年   5篇
  2009年   8篇
  2008年   2篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1994年   6篇
  1993年   1篇
  1985年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
2.
Chagasic megacolon is accompanied by extensive myenteric and, simultaneously, moderate submucosal neuron loss. Here, we examined changes of the innervation pattern of the lamina propria (LP) and muscularis mucosae (MM). Two alternating sets of cryosections were taken from seven non-chagasic colonic and seven chagasic megacolonic specimens (the latter included both the dilated megacolonic and the non-dilated transitional oral and anal zones) and were immunohistochemically triple-stained for smooth-muscle actin (SMA), synaptophysin (SYN) and glial acid protein S100 and, alternatively, for SMA, vasoactive intestinal peptide (VIP) and somatostatin (SOM). Subsequent image analysis and statistical evaluation of nervous tissue profile areas revealed that, in LP, the most extreme differences (i.e. increase in thickness or decrease in nerve, glia and muscle tissue profile area, respectively) compared with control values occurred in the dilated megacolonic zone itself. In contrast, the most extreme differences in the MM were in the anal-to-megacolonic zone (except the profile area of muscle tissue, which was lowest in the megacolonic zone). This parallels our previous results in the external muscle coat. A partial and selective survival of VIP-immunoreactive in contrast to SOM-immunoreactive nerve fibres was observed in both mucosal layers investigated. Thus, VIPergic nerve elements might be crucial for the maintenance of the mucosal barrier. The differential changes of neural tissue parameters in LP and MM might reflect a multifactorial rather than a pure neurogenic development of megacolon in chronic Chagas’ disease.  相似文献   
3.
A T-DNA locus comprising nptII, uidA and nos genes — all under the control of the nos promoter (this locus was designated K because it encodes resistance to Kanamycin) - was found to be inherited erratically in a transgenic tobacco line. This anomalous behavior was partially explained following a karyotype analysis of plants representing several generations: these plants were aneuploids, presumably for the K-containing chromosome. During four generations of sexual propagation, transgenic plants that were either trisomic or tetrasomic for the K-containing chromosome (i.e. 2n=49 or 2n=50, respectively) were obtained. The trisomic plants (2n=48+1) were virtually indistinguishable phenotypically from normal euploids (2n=4x=48), whereas the tetrasomic plants (2n=48+2) were smaller, had somewhat misshapen leaves and exhibited reduced fertility. Although the amount of NPTH protein in different trisomic (K--, KK-, KKK) and tetrasomic (KK--, KKK-) plants was generally consistent with a K dosage effect, the genetic behavior of each trisomic — with respect to segregation of KanR and marker gene activity in progeny — was unique and not completely explicable by invoking aneuploidy. Specifically, unexpected gains or losses of K could occur, suggesting the formation of double reductional gametes and/or frequent gene conversion at this locus. The susceptibility of K locus marker genes to trans-inactivation in the trisomic and tetrasomic lines was tested by crossing in partially homologous silencing loci. In all transgenotypes tested, the three K marker genes were sensitive to trans-silencing, which was accompanied by methylation in all copies of the nos promoter. In addition to this directed inactivation/methylation, the K locus could also undergo infrequent, spontaneous partial methylation, which produced stable epialleles. In most plants, however, the multiple copies of the nos promoter at this locus remained unmethylated and active through four generations in all transgenotypes examined. The significance of these results for irregular inheritance patterns, aneuploid syndromes and homology-dependent gene silencing is discussed.  相似文献   
4.
In this study, we wished to clarify the distribution and co-localization of nitric oxide synthase and NADPH-diaphorase (NADPH-d) in nerve cells, nerve fibres and parenchymal cells in exocrine and endocrine pancreas, and to assess the influence of fixation on the staining pattern obtained. For this purpose, we applied nitric oxide synthase immunocytochemistry and NADPH-d histochemistry to rat and human pancreas under different fixation conditions. Antibodies to neuronal and endothelial nitric oxide synthase were similarly applied. We found complete co-localization of neuronal nitric oxide synthase and NADPH-d in ganglion cells, and in nerve fibres around acini, excretory ducts, blood vessels and in islets of Langerhans of rat and human pancreas. Immunoreactivity for endothelial nitric oxide synthase was co-localized with NADPH-d in endothelial cells. However, in NADPH-d reactive islet and ductal epithelial cells we could detect neither brain nor endothelial nitric oxide synthase immunoreactivity with any fixation protocol applied. There were marked differences in NADPH-d staining of both neurons and parenchymal cells under different fixation conditions. These results indicate the existence of different types of NADPH-d, which are associated or not associated with nitric oxide synthase(s), and which are differently influenced by various fixation procedures in rat and human pancreas.  相似文献   
5.
 Sequential nitric oxide synthase immunohistochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry in pig small intestinal wholemounts revealed a complete colocalisation of the two nitrergic markers in submucous neurons. The external submucous plexus (ESP) contained nitrergic neurons throughout. In the internal submucous plexus (ISP) we found a moderate number of nitrergic neurons in the duodenum, while they were rare in the jejunum and nearly absent in the ileum. Combined NADPHd histochemistry and silver impregnation showed morphological ESP type III and VI neurons to be NADPHd positive whereas ESP type II, IV and V neurons were NADPHd negative. Axons of ESP type III, IV and VI neurons were often observed to enter interconnecting strands directed abluminally. ESP type II neurons projected mainly to the ISP. In special silver-impregnated wholemounts containing both external muscle layers and the abluminal part of the submucous layer, i.e. the myenteric plexus and the ESP, the great majority of impregnated axons within the interconnecting strands were observed to run between both plexuses and did not enter the circular muscle layer. We conclude that ESP type III and VI neurons are nitrergic while ESP type II, IV and V neurons are non-nitrergic. Furthermore, we assume that ESP type III, IV and VI neurons may represent a submucosal input to the myenteric plexus. Accepted: 26 August 1997  相似文献   
6.
7.

Background

The process of bone resorption by osteoclasts is regulated by Cathepsin K, the lysosomal collagenase responsible for the degradation of the organic bone matrix during bone remodeling. Recently, Cathepsin K was regarded as a potential target for therapeutic intervention of osteoporosis. However, mechanisms leading to osteopenia, which is much more common in young female population and often appears to be the clinical pre-stage of idiopathic osteoporosis, still remain to be elucidated, and molecular targets need to be identified.

Methodology/Principal Findings

We found, that in juvenile bone the large conductance, voltage and Ca2+-activated (BK) K+ channel, which links membrane depolarization and local increases in cytosolic calcium to hyperpolarizing K+ outward currents, is exclusively expressed in osteoclasts. In juvenile BK-deficient (BK−/−) female mice, plasma Cathepsin K levels were elevated two-fold when compared to wild-type littermates. This increase was linked to an osteopenic phenotype with reduced bone mineral density in long bones and enhanced porosity of trabecular meshwork in BK−/− vertebrae as demonstrated by high-resolution flat-panel volume computed tomography and micro-CT. However, plasma levels of sRANKL, osteoprotegerin, estrogene, Ca2+ and triiodthyronine as well as osteoclastogenesis were not altered in BK−/− females.

Conclusion/Significance

Our findings suggest that the BK channel controls resorptive osteoclast activity by regulating Cathepsin K release. Targeted deletion of BK channel in mice resulted in an osteoclast-autonomous osteopenia, becoming apparent in juvenile females. Thus, the BK−/− mouse-line represents a new model for juvenile osteopenia, and revealed the BK channel as putative new target for therapeutic controlling of osteoclast activity.  相似文献   
8.
One frequent chronic syndrome of Chagas’ disease is megacolon, an irreversible dilation of a colonic segment. Extensive enteric neuron loss in the affected segment is regarded as key factor for deficient motility. Here, we assessed the quantitative balance between cholinergic and nitrergic neurons representing the main limbs of excitatory and inhibitory colonic motor innervation, respectively. From surgically removed megacolonic segments of four patients, each three myenteric wholemounts (from non-dilated oral, megacolonic and non-dilated anal parts) was immunohistochemically triple-stained for choline acetyltransferase, neuronal nitric oxide synthase (NOS) and the panneuronal human neuronal protein Hu C/D. Degenerative changes were most pronounced in the megacolonic and anal regions, e.g. bulked, honeycomb-like ganglia with few neurons which were partly enlarged or atrophic or vacuolated. Neuron counts from each 15 ganglia of 12 megacolonic wholemounts were compared with those of 12 age- and region-matched controls. Extensive neuron loss, mainly in megacolonic and anal wholemounts, was obvious. In all three regions derived from megacolonic samples, the proportion of NOS-positive neurons (control: 55%) was significantly increased: in non-dilated oral parts to 61% (p = 0.003), in megacolonic regions to 72% (p < 0.001) and in non-dilated anal regions to 78% (p < 0.001). We suggest the chronic dilation of megacolonic specimens to be due to the preponderance of the nitrergic, inhibitory input to the intestinal muscle. However, the observed neuronal imbalance was not restricted to the dilated regions: the non-dilated anal parts may be innervated by ascending, cholinergic axons emerging from less affected, more anally located regions.  相似文献   
9.
Intraganglionic laminar endings (IGLEs) represent the only vagal mechanosensory terminals in the tunica muscularis of the esophagus and may be involved in local reflex control. We recently detected extensive though not complete colocalization of the vesicular glutamate transporter 2 (VGLUT2) with markers for IGLEs. To elucidate this colocalization mismatch, this study aimed at identifying markers for nitrergic, cholinergic, peptidergic, and adrenergic neurons and glial cells, which may colocalize with VGLUT2 outside of IGLEs. Confocal imaging revealed, besides substantial colocalization of VGLUT2 and substance P (SP), no other significant colocalizations of VGLUT2 and immunoreactivity for any of these markers within the same varicosities. However, we found close contacts of VGLUT2-positive structures to vesicular acetylcholine transporter, choline acetyltransferase, neuronal nitric oxide synthase, galanin, neuropeptide Y, and vasoactive intestinal peptide immunoreactive cell bodies and varicosities, as well as to glial cells. Neuronal perikarya were never positive for VGLUT2. Thus, VGLUT2 was almost exclusively found in IGLEs and may serve as a specific marker for them. In addition, many IGLEs also contained SP. The close contacts established by IGLEs to myenteric cell bodies, dendrites, and varicose fibers suggest that IGLEs modulate various types of enteric neurons and vice versa.  相似文献   
10.
The molecular mechanisms of how alpha(1) and beta subunits of voltage-gated Ca(2+) channels interact with one another are still controversial. Here we show that despite a mutation in the beta interaction domain that has previously been shown to disrupt binding, alpha(1C)Y467S and beta(1a-myc) still formed immunoprecipitable complexes when coexpressed in tsA201 cells. However, the alpha(1C)Y467S-beta(1a-myc) complexes had a decreased affinity to (+)-[(3)H]isradipine. This indicates that the beta interaction domain in the I-II loop of the alpha(1) subunit is not merely an anchor required for the functional interaction of the two Ca(2+) channel subunits but is itself part of the effector pathway for beta-induced channel modulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号