首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2015年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
We tested the value of ethanol fuel as a killing solution in terms of sampling efficiency (species richness and accumulated abundance) and DNA preservation of Ensifera ground-dwelling specimens. Sampling efficiency was evaluated comparing abundance and species richness of pitfall sampling using 100% ethanol fuel, with two alternative killing solutions. We evaluated the DNA preservation efficiency of the killing solutions and of alternative storage solutions. Ethanol fuel was the most efficient killing solution, and allowed successful DNA preservation. This solution is cheaper than other preserving liquids, and is easily acquired near field study sites since it is available at every fuel station in Brazil and at an increasing number of fuel stations in the U.S. We recommend the use of ethanol fuel as a killing and storage solution, because it is a cheap and efficient alternative for large-scale arthropod sampling, both logistically and for DNA preservation. For open habitat sampling with high day temperatures, we recommend doubling the solution volume to cope with high evaporation, increasing its efficacy over two days.  相似文献   
2.
Crickets are often found feeding on fallen fruits among forest litter. Fruits and other sugar-rich resources are not homogeneously distributed, nor are they always available. We therefore expect that crickets dwelling in forest litter have a limited supply of sugar-rich resource, and will perceive this and displace towards resource-supplemented sites. Here we evaluate how sugar availability affects cricket species richness and abundance in old-growth Atlantic forest by spraying sugarcane syrup on leaf litter, simulating increasing availability, and collecting crickets via pitfall trapping. We found an asymptotic positive association between resource addition and species richness, and an interaction between resource addition and species identity on cricket abundance, which indicates differential effects of resource addition among cricket species. Our results indicate that 12 of the 13 cricket species present in forest litter are maintained at low densities by resource scarcity; this highlights sugar-rich resource as a short-term driver of litter cricket community structure in tropical forests. When resource was experimentally increased, species richness increased due to behavioral displacement. We present evidence that the density of many species is limited by resource scarcity and, when resources are added, behavioral displacement promotes increased species packing and alters species composition. Further, our findings have technical applicability for increasing sampling efficiency of local cricket diversity in studies aiming to estimate species richness, but with no regard to local environmental drivers or species-abundance characteristics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号