首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1914年   1篇
  1879年   1篇
排序方式: 共有32条查询结果,搜索用时 203 毫秒
1.
2.
Feeding and trapping experiments to Peganum harmala callus cultures were limited by compartmentation; exogenous substrates were detoxified by precipitation, presumably as polymers or conjugates, or by conversion to water-soluble products, such as phenols and glucosides, easily stored in vacuoles. Alkaloid-producing and non-alkaloid-producing callus cultures were readily able to convert tryptamine to 5-hydroxytryptamine and harmaline to dihydroruine (8-hydroxyglucosylharmaline). Phenolic substrates, including 5- and 6-hydroxy-tryptophan, 5- and 6-hydroxytryptamine and harmalol, were not metabolized. In alkaloid-producing callus cultures, radioactivity from [methylene-14C]-l-tryptophan and [methyl-14C-]-harmaline was incorporated into harmine. The dilution of radioactivity was 30000- and 2-fold respectively.  相似文献   
3.
We describe a pipeline for the rapid production of recombinant Fabs derived from mouse monoclonal antibodies suitable for use in structural studies. The pipeline is exemplified by the production of three Fabs derived from the monoclonal antibodies OX108 (anti-CD200 receptor), OX117 and OX119 (anti-SIRPgamma). Heavy and light chain variable domains were inserted into separate expression vectors containing resident constant regions using In-Fusion PCR cloning. Following transient co-expression in HEK 293T cells, secreted Fab fragments were purified by metal chelate chromatography and gel filtration using an automated procedure with yields of up to 4mg/L of cell culture. Following crystallization trials, diffracting crystals were obtained for the recombinant Fabs of OX108 and OX117, and their structures solved to 2.3A and 2.4A, respectively.  相似文献   
4.

Aims

Non-alcoholic fatty liver disease and its precursor hepatic steatosis is common in obesity and type-2 diabetes and is associated with cardiovascular disease (CVD). Men with type-2 diabetes and/or CVD have a high prevalence of testosterone deficiency. Testosterone replacement improves key cardiovascular risk factors. The effects of testosterone on hepatic steatosis are not fully understood.

Main methods

Testicular feminised (Tfm) mice, which have a non-functional androgen receptor (AR) and very low serum testosterone levels, were used to investigate testosterone effects on high-cholesterol diet-induced hepatic steatosis.

Key findings

Hepatic lipid deposition was increased in Tfm mice and orchidectomised wild-type littermates versus intact wild-type littermate controls with normal androgen physiology. Lipid deposition was reduced in Tfm mice receiving testosterone treatment compared to placebo. Oestrogen receptor blockade significantly, but only partially, reduced the beneficial effects of testosterone treatment on hepatic lipid accumulation. Expression of key regulatory enzymes of fatty acid synthesis, acetyl-CoA carboxylase alpha (ACACA) and fatty acid synthase (FASN) were elevated in placebo-treated Tfm mice versus placebo-treated littermates and Tfm mice receiving testosterone treatment. Tfm mice on normal diet had increased lipid accumulation compared to littermates but significantly less than cholesterol-fed Tfm mice and demonstrated increased gene expression of hormone sensitive lipase, stearyl-CoA desaturase-1 and peroxisome proliferator-activated receptor-gamma but FASN and ACACA were not altered.

Significance

An action of testosterone on hepatic lipid deposition which is independent of the classic AR is implicated. Testosterone may act in part via an effect on the key regulatory lipogenic enzymes to protect against hepatic steatosis.  相似文献   
5.

Background

Zika virus (ZIKV) has become a global threat with immediate need for accurate diagnostics, efficacious vaccines and therapeutics. Several ZIKV envelope (Env)-based vaccines have been developed recently. However, many commercially available ZIKV Env are based on the African lineage and produced in insect cells. Here, we sought to produce Asian-lineage ZIKV Env in mammalian cells for research and clinical applications.

Methods

We designed various gene expression constructs to optimize the production of ZIKV using prM-Env and full or C-terminal truncations of Env; with or without a rat CD4 fusion partner to allow large-scale production of soluble protein in mammalian HEK293 cells. Protein expression was verified by mass spectrometry and western-blot with a pan-flavivirus antibody, a ZIKV Env monoclonal antibody and with immune sera from adenoviral (ChAdOx1) ZIKV Env-vaccinated mice. The resulting Env-CD4 was used as a coating reagent for immunoassay (ELISA) using both mouse and human seropositive sera.

Results

Replacement of the C-terminus transmembrane Env domain by a rat CD4 and addition of prM supported optimal expression and secretion of Env. Binding between the antigens and the antibodies was similar to binding when using commercially available ZIKV Env reagents. Furthermore, antibodies from ZIKV patients bound ZIKV Env-CD4 in ELISA assays, whereas sera from healthy blood donors yielded minimal OD background. The serological outcomes of this assay correlated also with ZIKV neutralisation capacity in vitro.

Conclusions

Results obtained from this study indicate the potential of the Asian-lineage Zika Env-CD4 and Env proteins in ELISA assays to monitor humoral immune responses in upcoming clinical trials as well as a sero-diagnostic tool in ZIKV infection.
  相似文献   
6.
Non-tuberculous mycobacteria are a threat to human health, gaining entry to the body through contaminated water systems, where they form persistent biofilms despite extensive attempts at disinfection. Silver is a natural antibacterial agent and in nanoparticle form activity is increased by a high surface area. Silver nanoparticles (AgNPs) have been used as alternative disinfectants in circulating water systems, washing machines and even clothing. However, nanoparticles, like any other antibiotic that has a pervasive durable presence, carry the risk of creating a resistant population. In this study Mycobacterium smegmatis strain mc2155 was cultured in AgNP enriched agar such that only a small population survived. Surviving cultures were isolated and re-exposed to AgNPs and AgNO3 and resistance to silver was compared to a negative control. After only a single exposure, mutant M. smegmatis populations were resistant to AgNPs and AgNO3. Further, the silver resistant mutants were exposed to antibiotics to determine if general resistance had been conferred. The minimum inhibitory concentration of isoniazid was four times higher for silver resistant mutants than for strain mc2155. However, core resistance was not conferred to other toxic metal ions. The mutants had lower resistance to CuSO4 and ZnSO4 than the mc2155 strain.  相似文献   
7.
Human Carboxylesterase 1 (hCES1) is the key liver microsomal enzyme responsible for detoxification and metabolism of a variety of clinical drugs. To analyse the role of the single N-linked glycan on the structure and activity of the enzyme, authentically glycosylated and aglycosylated hCES1, generated by mutating asparagine 79 to glutamine, were produced in human embryonic kidney cells. Purified enzymes were shown to be predominantly trimeric in solution by analytical ultracentrifugation. The purified aglycosylated enzyme was found to be more active than glycosylated hCES1 and analysis of enzyme kinetics revealed that both enzymes exhibit positive cooperativity. Crystal structures of hCES1 a catalytically inactive mutant (S221A) and the aglycosylated enzyme were determined in the absence of any ligand or substrate to high resolutions (1.86 Å, 1.48 Å and 2.01 Å, respectively). Superposition of all three structures showed only minor conformational differences with a root mean square deviations of around 0.5 Å over all Cα positions. Comparison of the active sites of these un-liganded enzymes with the structures of hCES1-ligand complexes showed that side-chains of the catalytic triad were pre-disposed for substrate binding. Overall the results indicate that preventing N-glycosylation of hCES1 does not significantly affect the structure or activity of the enzyme.  相似文献   
8.
Leishmania spp. is a protozoan parasite and the causative agent of leishmaniasis. Thymidine kinase (TK) catalyses the transfer of the γ-phosphate of ATP to 2’-deoxythymidine (dThd) forming thymidine monophosphate (dTMP). L. major Type II TK (LmTK) has been previously shown to be important for infectivity of the parasite and therefore has potential as a drug target for anti-leishmanial therapy. In this study, we determined the enzymatic properties and the 3D structures of holo forms of the enzyme. LmTK efficiently phosphorylates dThd and dUrd and has high structural homology to TKs from other species. However, it significantly differs in its kinetic properties from Trypanosoma brucei TK since purines are not substrates of the enzyme and dNTPs such as dUTP inhibit LmTK. The enzyme had Km and kcat values for dThd of 1.1 μM and 2.62 s-1 and exhibits cooperative binding for ATP. Additionally, we show that the anti-retroviral prodrug zidovudine (3-azido-3-deoxythymidine, AZT) and 5’-modified dUrd can be readily phosphorylated by LmTK. The production of recombinant enzyme at a level suitable for structural studies was achieved by the construction of C-terminal truncated versions of the enzyme and the use of a baculoviral expression system. The structures of the catalytic core of LmTK in complex with dThd, the negative feedback regulator dTTP and the bi-substrate analogue AP5dT, were determined to 2.74, 3.00 and 2.40 Å, respectively, and provide the structural basis for exclusion of purines and dNTP inhibition. The results will aid the process of rational drug design with LmTK as a potential target for anti-leishmanial drugs.  相似文献   
9.
OBJECTIVES: To examine the relationship between serum levels of inflammatory cytokines and testosterone in men with stable coronary artery disease (CAD). Evidence supports a beneficial effect of testosterone upon objective measures of myocardial ischaemia in men with CAD, and in animal models of atherosclerosis. Inflammatory cytokines are involved in many stages of the atherosclerotic process, however, the effect of testosterone upon inflammatory cytokines within the cardiovascular system is largely unknown. METHODS: Serum was collected from 69 men (59+/-1 years) having >75% occlusion of 1, 2, or 3 coronary arteries. Levels of total testosterone (TT), bioavailable testosterone (BT), tumour necrosis factor-alpha (TNFalpha), interleukin (IL)-1-beta (IL-1beta), IL-6 and IL-10 were measured and analysis made between men with 1, 2, or 3 vessel CAD, and between men with hypogonadal, borderline hypogonadal and eugonadal serum levels of testosterone. RESULTS: In patients with 1, 2, or 3 vessel CAD, significant stepwise increases were observed in levels of IL-1beta: 0.16+/-0.03, 0.22+/-0.06, and 0.41+/-0.08 pg/ml (p=0.035), and IL-10: 0.93+/-0.11, 1.17+/-0.14, and 2.94+/-0.65 pg/ml (p=0.008). A significant stepwise increase in levels of IL-1beta was also observed in eugonadal, borderline hypogonadal, and hypogonadal men: 0.19+/-0.05, 0.29+/-0.05, and 0.46+/-0.13 pg/ml (p=0.047). CONCLUSION: Consequently this data implicates IL-1beta and IL-10 in the pathogenesis of CAD and suggests that testosterone may regulate IL-1beta activity in men with CAD.  相似文献   
10.
Glycoproteins present special problems for structural genomic analysis because they often require glycosylation in order to fold correctly, whereas their chemical and conformational heterogeneity generally inhibits crystallization. We show that the "glycosylation problem" can be solved by expressing glycoproteins transiently in mammalian cells in the presence of the N-glycosylation processing inhibitors, kifunensine or swainsonine. This allows the correct folding of the glycoproteins, but leaves them sensitive to enzymes, such as endoglycosidase H, that reduce the N-glycans to single residues, enhancing crystallization. Since the scalability of transient mammalian expression is now comparable to that of bacterial systems, this approach should relieve one of the major bottlenecks in structural genomic analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号