首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   3篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2003年   1篇
  1998年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
Imine reductases are nicotinamide-dependent enzymes that catalyze the asymmetric reduction of various imines to the corresponding amine products. Owing to the increasing roles of chiral amines and heterocyclic compounds as intermediates for pharmaceuticals, the demand for novel selective synthesis strategies is vitally important. Recent studies have demonstrated the discovery and structural characterization of a number of stereoselective imine reductase enzymes. Here, we highlight recent progress in applying imine reductases for the formation of chiral amines and heterocycles. It particularly focuses on the utilization of imine reductases in reductive aminations of aldehydes and ketones with various amine nucleophiles, one of the most powerful reactions in the synthesis of chiral amines. Second, we report on the synthesis of saturated substituted N-heterocycles by combining them with further biocatalysts, such as carboxylic acid reductases, oxidases or transaminases. Finally, we summarize the latest applications of imine reductases in the promiscuous asymmetric hydrogenation of a highly reactive carbonyl compound and the engineering of the cofactor specificity from NADPH to NADH.  相似文献   
3.
The recessive mouse mutant Mpv17 is characterized by the development of early-onset glomerulosclerosis, concomitant hypertension, and structural alterations of the inner ear. The primary cause of the disease is the loss of function of the Mpv17 protein, a peroxisomal gene product involved in reactive oxygen metabolism. In our search of a common mediator exerting effects on several aspects of the phenotype, we discovered that the absence of the Mpv17 gene product causes a strong increase in matrix metalloproteinase 2 (MMP-2) expression. This was seen in the kidney and cochlea of Mpv17-negative mice as well as in tissue culture cells derived from these animals. When these cells were transfected with the human Mpv17 homolog, an inverse causal relationship between Mpv17 and MMP-2 expression was established. These results indicate that the Mpv17 protein plays a crucial role in the regulation of MMP-2 and suggest that enhanced MMP-2 expression might mediate the mechanisms leading to glomerulosclerosis, inner ear disease, and hypertension in this model.  相似文献   
4.
Recent progress in industrial biocatalysis   总被引:2,自引:0,他引:2  
In recent years, several procedures have been reported for the development of biocatalytic processes. This review focuses on selected examples integrating biocatalysts into a variety of industrially interesting processes ranging from the manufacture of smaller, chiral speciality chemicals to the synthesis of more complex pharmaceutical intermediates. The use of rational protein design, multistep processes and de novo design of enzyme catalysts for the stereocontrolled preparation of important target structures is discussed.  相似文献   
5.
A bacterial P450 monooxygenase-based whole cell biocatalyst using Escherichia coli has been applied in the production of ω-hydroxy dodecanoic acid from dodecanoic acid (C12-FA) or the corresponding methyl ester. We have constructed and purified a chimeric protein where the fusion of the monooxygenase CYP153A from Marinobacter aquaeloei to the reductase domain of P450 BM3 from Bacillus megaterium ensures optimal protein expression and efficient electron coupling. The chimera was demonstrated to be functional and three times more efficient than other sets of redox components evaluated. The established fusion protein (CYP153AM. aq.-CPR) was used for the hydroxylation of C12-FA in in vivo studies. These experiments yielded 1.2 g l–1 ω-hydroxy dodecanoic from 10 g l–1 C12-FA with high regioselectivity (> 95%) for the terminal position. As a second strategy, we utilized C12-FA methyl ester as substrate in a two-phase system (5:1 aqueous/organic phase) configuration to overcome low substrate solubility and product toxicity by continuous extraction. The biocatalytic system was further improved with the coexpression of an additional outer membrane transport system (AlkL) to increase the substrate transfer into the cell, resulting in the production of 4 g l–1 ω-hydroxy dodecanoic acid. We further summarized the most important aspects of the whole-cell process and thereupon discuss the limits of the applied oxygenation reactions referring to hydrogen peroxide, acetate and P450 concentrations that impact the efficiency of the production host negatively.  相似文献   
6.
Biocatalytic racemization of aliphatic and aryl-aliphatic sec-alcohols and alpha-hydroxyketones (acyloins) was accomplished using whole resting cells of bacteria, fungi, and one yeast. The mild (physiological) reaction conditions ensured the suppression of undesired side reactions, such as elimination or condensation. Cofactor and inhibitor studies suggest that the racemization proceeds through an equilibrium-controlled enzymatic oxidation-reduction sequence via the corresponding ketones or alpha-diketones, respectively, which were detected in various amounts. Ketone formation could be completely suppressed by exclusion of molecular oxygen. Figure Biocatalytic racemization whole microbial cells.  相似文献   
7.
Chiral amines are valuable building blocks for the production of a variety of pharmaceuticals, agrochemicals and other specialty chemicals. Only recently, imine reductases (IREDs) were discovered which catalyze the stereoselective reduction of imines to chiral amines. Although several IREDs were biochemically characterized in the last few years, knowledge of the reaction mechanism and the molecular basis of substrate specificity and stereoselectivity is limited. To gain further insights into the sequence‐function relationships, the Imine Reductase Engineering Database ( www.IRED.BioCatNet.de ) was established and a systematic analysis of 530 putative IREDs was performed. A standard numbering scheme based on R‐IRED‐Sk was introduced to facilitate the identification and communication of structurally equivalent positions in different proteins. A conservation analysis revealed a highly conserved cofactor binding region and a predominantly hydrophobic substrate binding cleft. Two IRED‐specific motifs were identified, the cofactor binding motif GLGxMGx5[ATS]x4Gx4[VIL]WNR[TS]x2[KR] and the active site motif Gx[DE]x[GDA]x[APS]x3{K}x[ASL]x[LMVIAG]. Our results indicate a preference toward NADPH for all IREDs and explain why, despite their sequence similarity to β‐hydroxyacid dehydrogenases (β‐HADs), no conversion of β‐hydroxyacids has been observed. Superfamily‐specific conservations were investigated to explore the molecular basis of their stereopreference. Based on our analysis and previous experimental results on IRED mutants, an exclusive role of standard position 187 for stereoselectivity is excluded. Alternatively, two standard positions 139 and 194 were identified which are superfamily‐specifically conserved and differ in R‐ and S‐selective enzymes. Proteins 2016; 84:600–610. © 2016 Wiley Periodicals, Inc.  相似文献   
8.
Applied Microbiology and Biotechnology - Recently imine reductases (IREDs) have emerged as promising biocatalysts for the synthesis of a wide variety of chiral amines. To promote their application,...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号