首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   5篇
  国内免费   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   5篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1974年   1篇
  1971年   2篇
  1969年   1篇
  1967年   2篇
  1966年   2篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
The genes for cellobiose utilization are normally cryptic in Escherichia coli. The cellobiose system was used as a model to understand the process by which silent genes are maintained in microbial populations. Previously reported was (1) the isolation of a mutant strain that expresses the cellobiose-utilization (Cel) genes and (2) that expression of those genes allows utilization of three beta- glucoside sugars: cellobiose, arbutin, and salicin. The Cel gene cluster has now been cloned from that mutant strain. In the course of locating the Cel genes within the cloned DNA segment, it was discovered that inactivation of the Cel-encoded hydrolase rendered the host strain sensitive to all three beta-glucosides as potent inhibitors. This sensitivity arises from the accumulation of the phosphorylated beta- glucosides. Because even the fully active genes conferred some degree of beta-glucoside sensitivity, the effects of cellobiose on a series of five Cel+ mutants of independent origin were investigated. Although each of those strains utilizes cellobiose as a sole carbon and energy source, cellobiose also acts as a potent inhibitor that reduces the growth rate on glycerol 2.5-16.5-fold. On the other hand, wild-type strains that cannot utilize cellobiose are not inhibited. The observation that the same compound can serve either as a nutrient or as an inhibitor suggests that, under most conditions in which cellobiose will be present together with other resources, there is a strong selective advantage to having the cryptic (Cel0) allele. In those environments in which cellobiose is the sole, or the best, resource, mutants that express the genes (Cel+) will have a strong selective advantage. It is suggested that temporal alternation between these two conditions is a major factor in the maintenance of these genes in E. coli populations. This alternation of environments and fitnesses was predicted by the model for cryptic-gene maintenance that was previously published.   相似文献   
2.
Selection-induced mutations are nonrandom mutations that occur as specific and direct responses to environmental challenge. Examples of selection-induced mutations have been reported both in bacteria and in yeast. I previously showed (Hall 1988) that excisions of the mobile genetic element IS150 from within bglF are selection induced and argued that they occurred because they were potentially advantageous under the selective conditions employed. Mittler and Lenski (Mittler and Lenski 1992) have argued that such excisions are not selection induced but that they occur randomly in nondividing cells. Here I provide further evidence that IS150 excisions are induced by selection and that the excisions are immediately, rather than only potentially, advantageous to the cell. I also provide evidence that excisions, which Mittler and Lenski claim occur randomly in saturated broth cultures, actually occur after samples from those cultures are plated onto selective medium.   相似文献   
3.
Abstract

The novel method allowing identification of protein structure elements responsible for catalytic activity manifestation is proposed. Structural organization of various hydrolases was studied using the ANIS (ANalysis of Informational Structure) method. ANIS allows to reveal a hierarchy of the ELements of Information Structure (ELIS) using protein amino acid sequence. The ELIS corresponds to the variable length sites with an increased density of structural information. The amino acid residues forming the enzyme catalytic site were shown to belong to the different top-ranking ELIS located in the contact area of the corresponding spatial structure clusters. In the protein spatial structure catalytic sites are located in the area of contact between fragments of polypeptide chain (structural blocs) allocation to the different top-ranking ELIS. According to our results we concluded that structural blocks corresponding to top-ranking ELIS are crucial for protein functioning. Such regions are structurally independent, and their determinate mobility relative to each other is vital for an efficient enzymatic reaction to occur.  相似文献   
4.
Several classifications of protein spatial structures and their structural elements are known. This makes revealing of the relation between these structural elements and sequence fragments rather topical. The most important move in this direction would be the determination of positional sensitivity levels and ranges between the residues in protein sequences. In this work the Shannon-Weaver informational entropy was used as a disorder criterion for solving this problem. This entropy was computed as function of the distance between the amino acid residues in different sets of unhomological protein sequences. Similarity of this function for different sets of protein sequences was shown. Analysis of informational entropy allows detecting a long-range positional correlation (> or =30) between the amino acid residues and oscillations with periods of 3.6 and 2.9. These oscillation periods correspond to periodicity of alpha- and 3(10)-helices.  相似文献   
5.
A statistical approach is presented to model the kinetics of cell distribution in the process of ligand-receptor binding on cell surfaces. The approach takes into account the variation of the amount of receptors on cells assuming the homogeneity of monovalent binding sites and ligand molecules. The analytical expressions for the kinetics of cell distribution have been derived in the reaction-limited approximation. In order to demonstrate the applicability of the mathematical model, the kinetics of binding the rabbit, anti-mouse IgG with Ig-receptors of the murine hybridoma cells has been measured. Anti-mouse IgG was labeled with fluorescein isothiocyanate (FITC). The kinetics of cell distribution on ligand-receptor complexes was observed during the reaction process by real-time measuring of the fluorescence and light-scattering traces of individual cells with the scanning flow cytometer. The experimental data were fitted by the mathematical model in order to obtain the binding rate constant and the initial cell distribution on the amount of receptors.  相似文献   
6.
The Endo F2gene was overexpressed in E.coli as a fusion protein joined to the maltose-binding protein. MBP-Endo F2was found in a highly enriched state as insoluble, inactive inclusion bodies. Extraction of the inclusion bodies with 20% acetic acid followed by exhaustive dialysis rendered the fusion protein active and soluble. MBP-Endo F2was digested with Factor Xaand purified on Q-Sepharose. The enzyme was homogeneous by SDS-PAGE, and appeared as a single symmetrical peak on HPLC. Analysis of the amino-terminus demonstrated conclusively that recombinant Endo F2was homogeneous and identical to the native enzyme.   相似文献   
7.
The tumor necrosis factor (TNF) is a proinflammatory cytokine that plays a pivotal role in the regulation of the human immune system. Studies of the TNF functional topography are a challenging task in bioengineering. We have produced genes encoding the peptides D1 (3–30), D2 (31–85), D3 (86–114), and D4 (115–157), which correspond to isolated fragments of the informational structure of TNF. These genes were expressed in E. coli cells at a high level in a soluble form. We have shown that hybrid proteins SD2 and SD4 tend to form high-molecular aggregates, which can be destroyed by urea treatment. Purified peptides D1, D3, and D4 possess a similar secondary structure with dominating beta-structural elements. The analysis of the biological activity of these peptides has shown that they do not exhibit cytotoxic properties on L929 murine fibroblasts. The simultaneous addition of D1 with full-length TNF results in the concentration dependent suppression of TNF activity.  相似文献   
8.
9.
10.
Sub-unit vaccines are synthetic or recombinant peptides representing T- or B-cell epitopes of major protein antigens from a particular pathogen. Epitope selection requires the synthesis of peptides that overlap the protein sequences and screening for the most effective ones. In this study a new method of immunogenic peptide selection based on the analysis of information structure of protein sequences is suggested. The analysis of known B-cell epitope location in the information structure of Aspergillus fumigatus proteins Asp f 2 and Asp f 3 has shown that epitopes are scattered along the sequences of proteins for the exception of sites with Increased Degree Information Coordination (IDIC). Based on these results peptides from different allergens such as Asp f 2, Der p 1, and Fel d 1 were selected and produced in a recombinant form in the context of yeast virus-like particles (VLPs). Immunization of mice with VLPs containing peptides form allergens has induced the production of IgG able to recognize full-length antigens. This result suggests that the analysis of information structure of proteins can be used for the selection of peptides possessing cryptic B-cell epitope activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号