首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.

Noble metal nanoparticles (NPs) have attracted much attention due to their unique physical and chemical properties such as tunable surface plasmonics, high-efficiency electrochemical sensing, and enhanced fluorescence. We produced two biosensor chips consisting of Ag@Au bimetallic nanoparticles (BNPs) on a carbon thin film by simple RF-sputtering and RF-plasma-enhanced chemical vapor co-deposition. We deposited Au NPs with average size of 4 nm (Au1 NPs) or 11 nm (Au2 NPs) on a sensor chip consisting of Ag NPs with mean size of 15 nm, and we investigated the effect of shell size (Au NPs) on the chemical activities of the resulting Ag@Au1 BNPs and Ag@Au2 BNPs. We estimated the average size and morphology of Ag@Au BNPs by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. X-ray diffraction (XRD) patterns revealed that Ag NPs and Au NPs had face-centered cubic (FCC) structure. We studied aging of the biosensor chips consisting of Ag@Au BNPs by localized surface plasmon resonance (LSPR) spectroscopy for up to 3 months. UV–visible aging of the prepared samples indicated that Ag@Au1 BNPs, which corresponded to Ag NPs covered with smaller Au NPs, were more chemically active than Ag@Au2 BNPs. Furthermore, we evaluated changes in the LSPR absorption peaks of Ag@Au1 BNPs and bare Ag NPs in the presence of a DNA primer decamer at fM concentrations, to find that Ag@Au1 BNPs were more sensitive biosensor chips within a short response time as compared to bare Ag NPs.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号