首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   2篇
  国内免费   2篇
  2021年   2篇
  2017年   2篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1976年   2篇
  1968年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
1.
The feasibility of disrupting mating of Sparganothis fruitworm with a sprayable microencapsulated formulation of (E)-11-tetradecenyl acetate (E11-14:Ac), the major pheromone component, was evaluated in New Jersey during 1996 and 1997 seasons. In both years, application of encapsulated E11-14:Ac, at 25-187.5 g (AI)/ha, reduced the incidence of mating of virgin females placed in treated plots relative to those placed in control plots. Pheromone trap catches were lower in pheromone treated plots, indicating that fewer male moths were able to locate the traps in treated plots. Larval density and fruit damage were significantly lower in plots treated with 62.5,125, or 187.5 g (AI)/ha of pheromone than in the untreated control. Air and foliage samples were collected to determine the air titers and foliage residuals of E11-14:Ac throughout the adult flight during 1996 and 1997. E11-14:Ac levels in air and foliage samples, declined sharply one wk after the pheromone application. However, detectable levels of E11-14:Ac were present in both air and foliage samples throughout the 3- to 4-wk period after the pheromone application. Multiple applications of pheromone at lower rates may be more effective in maintaining pheromone levels than a single dose at higher rates. These results suggest that mating disruption is a promising strategy to manage Sparganothis fruitworm in cranberries.  相似文献   
2.
3.
TLRs, including TLR4, play a crucial role in inflammatory-based diseases, and TLR4 has been identified as a therapeutic target for pharmacological intervention. In previous studies, we investigated the potential of FP7, a novel synthetic glycolipid active as a TLR4 antagonist, to inhibit haematopoietic and non-haematopoietic MyD88-dependent TLR4 pro-inflammatory signalling. The main aim of this study was to investigate the action of FP7 and its derivative FP12 on MyD88-independent TLR4 signalling in THP-1 derived macrophages. Western blotting, Ab array and ELISA approaches were used to explore the effect of FP7 and FP12 on TRIF-dependent TLR4 functional activity in response to LPS and other endogenous TLR4 ligands in THP-1 macrophages. A different kinetic in the inhibition of endotoxin-driven TBK1, IRF3 and STAT1 phosphorylation was observed using different LPS chemotypes. Following activation of TLR4 by LPS, data revealed that FP7 and FP12 inhibited TBK1, IRF3 and STAT1 phosphorylation which was associated with down-regulation IFN-β and IP-10. Specific blockage of the IFN type one receptor showed that these novel molecules inhibited TRIF-dependent TLR4 signalling via IFN-β pathways. These results add novel information on the mechanism of action of monosaccharide FP derivatives. The inhibition of the TRIF-dependent pathway in human macrophages suggests potential therapeutic uses for these novel TLR4 antagonists in pharmacological interventions on inflammatory diseases.  相似文献   
4.
5.
DNA-dependent protein kinase (DNA-PK) plays a pivotal role in the repair of DNA double-strand breaks (DSB) and is centrally involved in regulating cellular radiosensitivity. Here, we identify DNA-PK as a key therapeutic target for augmenting accelerated senescence in irradiated human cancer cells. We find that BEZ235, a novel inhibitor of DNA-PK and phosphoinositide 3-kinase (PI3K)/mTOR, abrogates radiation-induced DSB repair resulting in cellular radiosensitization and growth delay of irradiated tumor xenografts. Importantly, radiation enhancement by BEZ235 coincides with a prominent p53-dependent accelerated senescence phenotype characterized by positive β-galactosidase staining, G(2)-M cell-cycle arrest, enlarged and flattened cellular morphology, and increased p21 expression and senescence-associated cytokine secretion. Because this senescence response to BEZ235 is accompanied by unrepaired DNA DSBs, we examined whether selective targeting of DNA-PK also induces accelerated senescence in irradiated cells. Significantly, we show that specific pharmacologic inhibition of DNA-PK, but not PI3K or mTORC1, delays DSB repair leading to accelerated senescence after radiation. We additionally show that PRKDC knockdown using siRNA promotes a striking accelerated senescence phenotype in irradiated cells comparable with that of BEZ235. Thus, in the context of radiation treatment, our data indicate that inhibition of DNA-PK is sufficient for the induction of accelerated senescence. These results validate DNA-PK as an important therapeutic target in irradiated cancer cells and establish accelerated senescence as a novel mechanism of radiosensitization induced by DNA-PK blockade.  相似文献   
6.
Insulin stimulates glucose uptake into muscle and fat cells by translocating glucose transporter 4 (GLUT4) to the cell surface, with input from phosphatidylinositol (PI) 3-kinase and its downstream effector Akt/protein kinase B. Whether PI 3,4,5-trisphosphate (PI(3,4,5)P(3)) suffices to produce GLUT4 translocation is unknown. We used two strategies to deliver PI(3,4,5)P(3) intracellularly and two insulin-sensitive cell lines to examine Akt activation and GLUT4 translocation. In 3T3-L1 adipocytes, the acetoxymethyl ester of PI(3,4,5)P(3) caused GLUT4 migration to the cell periphery and increased the amount of plasma membrane-associated phospho-Akt and GLUT4. Intracellular delivery of PI(3,4,5)P(3) using polyamine carriers also induced translocation of myc-tagged GLUT4 to the surface of intact L6 myoblasts, demonstrating membrane insertion of the transporter. GLUT4 translocation caused by carrier-delivered PI(3,4,5)P(3) was not reproduced by carrier-PI 4,5-bisphosphate or carrier alone. Like insulin, carrier-mediated delivery of PI(3,4,5)P(3) elicited redistribution of perinuclear GLUT4 and Akt phosphorylation at the cell periphery. In contrast to its effect on GLUT4 mobilization, delivered PI(3,4,5)P(3) did not increase 2-deoxyglucose uptake in either L6GLUT4myc myoblasts or 3T3-L1 adipocytes. The ability of exogenously delivered PI(3,4,5)P(3) to augment plasma membrane GLUT4 content without increasing glucose uptake suggests that input at the level of PI 3-kinase suffices for GLUT4 translocation but is insufficient to stimulate glucose transport.  相似文献   
7.
Class IA PI3Ks (phosphoinositide 3-kinases) generate the secondary messenger PtdIns(3,4,5)P(3), which plays an important role in many cellular responses. The accumulation of PtdIns(3,4,5)P(3) in cell membranes is routinely measured using GFP (green fluorescent protein)-labelled PH (pleckstrin homology) domains. However, the kinetics of membrane PtdIns(3,4,5)P(3) synthesis and turnover as detected by PH domains have not been validated using an independent method. In the present study, we measured EGF (epidermal growth factor)-stimulated membrane PtdIns(3,4,5)P(3) production using a specific monoclonal anti-PtdIns(3,4,5)P(3) antibody, and compared the results with those obtained using PH-domain-dependent methods. Anti-PtdIns(3,4,5)P(3) staining rapidly accumulated at the leading edge of EGF-stimulated carcinoma cells. PtdIns(3,4,5)P(3) levels were maximal at 1 min, and returned to basal levels by 5 min. In contrast, membrane PtdIns(3,4,5)P(3) production, measured by the membrane translocation of an epitope-tagged (BTK)PH (PH domain of Bruton's tyrosine kinase), remained approx. 2-fold above basal level throughout 4-5 min of EGF stimulation. To determine the reason for this disparity, we measured the rate of PtdIns(3,4,5)P(3) hydrolysis by measuring the decay of the PtdIns(3,4,5)P(3) signal after LY294002 treatment of EGF-stimulated cells. LY294002 abolished anti-PtdIns(3,4,5)P(3) membrane staining within 10 s of treatment, suggesting that PtdIns(3,4,5)P(3) turnover occurs within seconds of synthesis. In contrast, (BTK)PH membrane recruitment, once initiated by EGF, was relatively insensitive to LY294002. These data suggest that sequestration of PtdIns(3,4,5)P(3) by PH domains may affect the apparent kinetics of PtdIns(3,4,5)P(3) accumulation and turnover; consistent with this hypothesis, we found that GRP-1 (general receptor for phosphoinositides 1) PH domains [which, like BTK, are specific for PtdIns(3,4,5)P(3)] inhibit PTEN (phosphatase and tensin homologue deleted on chromosome 10) dephosphorylation of PtdIns(3,4,5)P(3) in vitro. These data suggest that anti-PtdIns(3,4,5)P(3) antibodies are a useful tool to detect localized PtdIns(3,4,5)P(3), and illustrate the importance of using multiple approaches for the estimation of membrane phosphoinositides.  相似文献   
8.
Using bone marrow derived mast cells from SH2-containing inositol-5-phosphatase (SHIP) +/+ and minus sign/minus sign mice, we found that the loss of SHIP leads to a dramatic increase in Steel Factor (SF)-stimulated phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)), a substantial reduction in PI(3,4)P(2), and no change in PI(4,5)P(2) levels. We also found that SF-induced activation of protein kinase B (PKB) is increased and prolonged in SHIP -/- cells, due in large part to more PKB associating with the plasma membrane in these cells. Pretreatment of SHIP -/- cells with 25 microm LY294002 resulted in complete inhibition of SF-induced PI(3,4)P(2), while still yielding PI(3,4,5)P(3) levels similar to those achieved in SHIP+/+ cells. This offered a unique opportunity to study the regulation of PKB by PI(3,4,5)P(3), in the absence of PI(3,4)P(2). Under these conditions, PKB activity was markedly reduced compared with that in SF-stimulated SHIP+/+ cells, even though more PKB localized to the plasma membrane. Although phosphoinositide-dependent kinase 1 mediated phosphorylation of PKB at Thr-308 was unaffected by LY294002, phosphorylation at Ser-473 was dramatically reduced. Moreover, intracellular delivery of PI(3,4)P(2) to LY294002-pretreated, SF-stimulated SHIP -/- cells increased phosphorylation of PKB at Ser-473 and increased PKB activity. These results are consistent with a model in which SHIP serves as a regulator of both activity and subcellular localization of PKB.  相似文献   
9.
10.
球形芽孢杆菌C3-41是我国分离的一株对蚊幼虫有毒杀作用的高毒力菌株,对库蚊、按蚊幼虫的毒性高于2362菌株,Southern杂交证明C\-3\|41总DNA中35Kb HindIII片段上带有419和514kD二元毒素基因,该片段由3479个核苷酸组成,核苷酸序列同2362菌株的二元毒素基因序列完全相同。含二元毒素基因的重组质粒pCW\|1和pCW\|2能在大肠杆菌中表达产生二元毒蛋白,但表达量低,重组子杀蚊毒性低。无晶体型苏云金芽孢杆菌以色列亚种重组子在其芽孢形成中能产生以晶体形式存在的二元毒素蛋白,其全发酵液和纯化晶体蛋白的杀蚊活性与C\-3\|41相近。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号