首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   4篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2015年   12篇
  2014年   16篇
  2013年   8篇
  2012年   12篇
  2011年   16篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   6篇
  2006年   8篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1991年   1篇
  1990年   1篇
  1982年   1篇
排序方式: 共有142条查询结果,搜索用时 187 毫秒
1.
Invasive plants apply new selection pressures on neighbor plant species by different means including allelopathy. Recent evidence shows allelopathy functions as remarkably influential mediator for invaders to be successful in their invaded range. However, few studies have determined whether native and non‐native species co‐occurring with invaders have evolved tolerance to allelopathy. In this study, we conducted germination and growth experiments to evaluate whether co‐occurring native Juncus pallidus and non‐native Lolium rigidum species may evolve tolerance to the allelochemicals induced by Cyanara cardunculus in Australian agricultural fields. The test species were germinated and grown in pots filled with collected invaded and uninvaded rhizosphere soil of C. cardunculus with and without activated carbon (AC). Additionally, a separate experiment was done to differentiate the direct effects of AC on the test species. The soil properties showed invaded rhizosphere soils had higher total phenolic and lower pH compared with uninvaded soils. We found significant reduction of germination percentage and seedling growth in terms of above‐ and belowground biomass, and maximum plant height and root length of native in the invaded rhizosphere soil of C. cardunculus, but little effect on non‐native grass species. Even soil manipulated with AC showed no significant differences in the measured parameters of non‐native except aboveground biomass. Taken together, the results indicate allelochemicals induced by C. cardunculus exert more suppressive effects on native than non‐native linking the coevolved tolerance of those.  相似文献   
2.
3.
4.
5.
Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free proline in the target species also suggests that the plant was in a stressed condition due to litter allelopathy. These findings are important for better understanding the invasive potential of boneseed and in devising control strategies.  相似文献   
6.
It has been proposed that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. The effect of varying salicylic acid (SA) supply (0, 0.1, 0.5 and 1.0mM) on growth, mineral uptake, membrane permeability, lipid peroxidation, H(2)O(2) concentration, UV-absorbing substances, chlorophyll and carotenoid concentrations of NaCl (40 mM) stressed maize (Zea mays L.) was investigated. Exogenously applied SA increased plant growth significantly both in saline and non-saline conditions. As a consequence of salinity stress, lipid peroxidation, measured in terms of malondialdehyde (MDA) content and membrane permeability was decreased by SA. UV-absorbing substances (UVAS) and H(2)O(2) concentration were increased by increasing levels of SA. SA also strongly inhibited Na(+) and Cl(-) accumulation, but stimulated N, Mg, Fe, Mn and Cu concentrations of salt stressed maize plants. These results suggest that SA could be used as a potential growth regulator to improve plant salinity stress resistance.  相似文献   
7.
The transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed in prostate and brain and shed from the cell surface in a metalloproteinase-dependent fashion. Neither the sheddase(s) responsible for TMEFF2 shedding nor the physiological significance or activity of the soluble TMEFF2 ectodomain (TMEFF2-ECD) has been identified. In the present study we present new evidence that a disintegrin and metalloproteinase-17 (ADAM17) is responsible for phorbol 12-myristate 13-acetate-induced release of TMEFF2-ECD using small interfering RNA to ablate ADAM17 expression or by inhibiting enzymatic activity. A single well shedding assay monitoring the release of alkaline phosphatase-tagged TMEFF2-ECD into medium and the generation of 22- and 14-kDa C-terminal fragments in lysates were dependent on ADAM17 activity. A gamma-secretase inhibitor prevented the formation of a 10-kDa fragment in cell lysates, thus establishing TMEFF2 as a novel substrate for regulated intramembrane proteolysis. We assigned proliferation-inducing activity to TMEFF2. Inhibition of TMEFF2 shedding using synthetic metalloproteinase inhibitors or small interfering RNA targeting TMEFF2 expression yielded a statistically significant reduction of cell proliferation in the lymph node-derived prostate cancer cells (LNCaPs) and a human embryonic kidney (HEK293) cell line overexpressing TMEFF2. The TMEFF2-ECD was able to induce ERK1/2 phosphorylation in an epidermal growth factor receptor (or ErbB1)-dependent manner in HEK293 cells. Our data suggest that TMEFF2 contributes to cell proliferation in an ADAM17-dependent autocrine fashion in cells expressing this protein.  相似文献   
8.
Canada generates approximately 1.45 x 10(8)t of residual biomass per year, containing an estimated energy value of 2.28 x 10(9)GJ, which is equivalent to about 22% of Canada's current annual energy use. Anaerobic digestion of these biomass residues using conventional technologies could generate 1.14 x 10(10)m(3)/year of CH(4) with a heating value of 4.56 x 10(8)GJ. Conversion of these residues using emerging technologies that favor the synthesis of H(2) and represses the synthesis of CH(4) could generate 1.47 x 10(10)m(3)/year renewable H(2), with a heating value of 1.89 x 10(8)GJ. While CH(4)-production results in a larger amount of energy recovery, generating H(2) from waste biomass is a renewable alternative that could fuel the hydrogen economy. Additional research to further both the technical and commercial development of microbial bio-energy from biomass is warranted.  相似文献   
9.
The aim of the study was to compare an enzyme immunoassay method with shell vial cell culture method for detection of rotavirus in fecal specimens. In addition, the correlation between laboratory results and clinical scores of patients with gastroenteritis was evaluated. A total of 219 fecal specimens from children (ages 3 weeks to 5 years) with acute gastroenteritis submitted to pediatric emergency room were evaluated by both ELISA and shell vial cell culture. A Vesikari score was used for assessing the severity of the illness. Among 219 stool samples tested, 107 (48.9%) were determined to be positive. Two specimens were positive by shell vial cell culture method while they were ELISA negative. According to these results the calculated sensitivity, specificity, PPV, and NPV of ELISA were 98.1%, 100%, 100%, and 98.2%, respectively. The mean severity score for the 107 episodes of rotavirus diarrhoea was 11.0 +/- 3.6 compared to 4.5 +/- 1.9 for the 112 episodes of non-rotavirus diarrhea in the same population. Our study indicates that ELISA, which is easier to perform, faster and cheaper than cell culture methods may be suitable for routine diagnosis of rotavirus infections. The severity of rotavirus positive gastroenteritis was significantly higher than that of rotavirus negative patients.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号