首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  13篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2010年   1篇
  2008年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
    
The oxidative interaction of cytochrome c (Cyt c) with liposomes of Palmitoyl Linoleyl Phosphatidyl Choline (PLPC) initiated by radio-induced free radicals was investigated. Results showed that the peroxidation of PLPC is decreased in the presence of Cyt c, meaning that this latter is the preferential target of hydroxyl radicals. In addition, when Cyt c was incubated with peroxidized PLPC, it was found to be able to decompose hydroperoxides of PLPC into hydroxides. The peroxidase activity of Cyt c proceeded via the opening of the tertiary structure of Cyt c, as suggested by the loss of the sixth coordination bond of the heme-iron. Even if it is known to preferentially interact with cardiolipin, this work shows that Cyt c is also able to interact with hydroperoxide species of non-anionic phospholipids.  相似文献   
2.
    
The metabolic syndrome (MetS) is an escalating problem worldwide, causing left ventricular stiffening, an early characteristic of diastolic dysfunction for which no treatment exists. As diastolic dysfunction and stiffening in MetS patients are associated with increased circulating dipeptidyl peptidase-4 (DPP-4) levels, we investigated whether the clinically approved DPP-4 inhibitor linagliptin reduces left ventricular stiffness in MetS-induced cardiac disease. Sixteen-week-old obese ZSF1 rats, displaying the MetS and left ventricular stiffness, received linagliptin-supplemented or placebo diet for four weeks. Linagliptin significantly reduced obesity, hyperlipidaemia, and hyperglycaemia and improved left ventricular relaxation. This improved relaxation was related to decreased cardiac fibrosis and cardiomyocyte passive stiffness (Fpassive). The reduced Fpassive was the result of titin isoform switching from the stiff N2B to the more flexible N2BA and increased phosphorylation of total titin and specifically its N2Bus region (S4080 and S3391). Importantly, DPP-4 directly cleaved titin in vitro, resulting in an increased Fpassive, which was prevented by simultaneous administration of linagliptin. In conclusion, linagliptin improves left ventricular stiffness in obese ZSF1 rats by preventing direct DPP4-mediated titin cleavage, as well as by modulating both titin isoform levels and phosphorylation. Reducing left ventricular stiffness by administering linagliptin might prevent MetS-induced early diastolic dysfunction in human.  相似文献   
3.
Early integration of research education into medical curricula is crucial for evidence-based practice. Yet, many medical students are graduating with no research experience due to the lack of such integration in their medical school programs. The purpose of this study was to explore the impact of a peer-organized, extra-curricular research methodology course on the attitudes of medical students towards research and future academic careers. Twenty one medical students who participated in a peer-organized research course were enrolled in three focus group discussions to explore their experiences, perceptions and attitudes towards research after the course. Discussions were conducted using a semi-structured interview guide, and were transcribed and thematically analyzed for major and minor themes identification. Our findings indicate that students’ perceptions of research changed after the course from being difficult initially to becoming possible. Participants felt that their research skills and critical thinking were enhanced and that they would develop research proposals and abstracts successfully. Students praised the peer-assisted teaching approach as being successful in enhancing the learning environment and filling the curricular gap. In conclusion, peer-organized extra-curricular research courses may be a useful option to promote research interest and skills of medical students when gaps in research education in medical curricula exist.  相似文献   
4.
5.
The characterization of membrane proteins is still challenging. The major issue is the high hydrophobicity of membrane proteins that necessitates the use of detergents for their extraction and solubilization. The very poor compatibility of mass spectrometry with detergents remains a tremendous obstacle in studies of membrane proteins. Here, we investigated the potential of atmospheric pressure photoionization (APPI) for mass spectrometry study of membrane proteins. This work was focused on the tetraspanin CD9 and the multidrug transporter BmrA. A set of peptides from CD9, exhibiting a broad range of hydropathicity, was investigated using APPI as compared to electrospray ionization (ESI). Mass spectrometry experiments revealed that the most hydrophobic peptides were hardly ionized by ESI whereas all peptides, including the highly hydrophobic one that corresponds to the full sequence of the first transmembrane domain of CD9, were easily ionized by APPI. The native protein BmrA purified in the presence of the non-ionic detergent beta-D-dodecyl maltoside (DDM) was digested in-solution using trypsin. The resulting peptides were investigated by flow injection analysis of the mixture followed by mass spectrometry. Upon ESI, only detergent ions were detected and the ionic signals from the peptides were totally suppressed. In contrast, APPI allowed many peptides distributed along the sequence of the protein to be detected. Furthermore, the parent ion corresponding to the first transmembrane domain of the protein BmrA was detected under APPI conditions. Careful examination of the APPI mass spectrum revealed a-, b-, c- and y- fragment ions generated by in-source fragmentation. Those fragment ions allowed unambiguous structural characterization of the transmembrane domain. In conclusion, APPI–MS appears as a versatile method allowing the ionization and fragmentation of hydrophobic peptides in the presence of detergent.  相似文献   
6.
Cytochrome c (cyt c) is an electron carrier involved in the mitochondrial respiratory chain and a critical protein in apoptosis. The oxidation of cytochrome c can therefore be relevant biologically. We studied whether cytochrome c underwent the attack of reactive oxygen species (ROS) during ionizing irradiation-induced oxidative stress. ROS were generated via water radiolysis under ionizing radiation (IR) in vitro. Characterization of oxidation was performed by mass spectrometry, after tryptic digestion, and UV-visible spectrophotometry. When both hydroxyl and superoxide free radicals were generated during water radiolysis, only five tryptic peptides of cyt c were reproducibly identified as oxidized according to a relation that was dependent of the dose of ionizing radiation. The same behavior was observed when hydroxyl free radicals were specifically generated (N(2)O-saturated solutions). Specific oxidation of cyt c by superoxide free radicals was performed and has shown that only one oxidized peptide (MIFAGIK+16), corresponding to the oxidation of Met80 into methionine sulfoxide, exhibited a radiation dose-dependent formation. In addition, the enzymatic site of cytochrome c was sensitive to the attack of both superoxide and hydroxyl radicals as observed through the reduction of Fe(3+), the degradation of the protoporphyrin IX and the oxidative disruption of the Met80-Fe(3+) bond. Noteworthy, the latter has been involved in the conversion of cyt c to a peroxidase. Finally, Met80 appears as the most sensitive residue towards hydroxyl but also superoxide free radicals mediated oxidation.  相似文献   
7.
8.
Biophysical Reviews - Redox/cysteine modification of proteins that regulate calcium cycling can affect contraction in striated muscles. Understanding the nature of these modifications would present...  相似文献   
9.
10.
In myocytes, small heat shock proteins (sHSPs) are preferentially translocated under stress to the sarcomeres. The functional implications of this translocation are poorly understood. We show here that HSP27 and αB-crystallin associated with immunoglobulin-like (Ig) domain-containing regions, but not the disordered PEVK domain (titin region rich in proline, glutamate, valine, and lysine), of the titin springs. In sarcomeres, sHSP binding to titin was actin filament independent and promoted by factors that increased titin Ig unfolding, including sarcomere stretch and the expression of stiff titin isoforms. Titin spring elements behaved predominantly as monomers in vitro. However, unfolded Ig segments aggregated, preferentially under acidic conditions, and αB-crystallin prevented this aggregation. Disordered regions did not aggregate. Promoting titin Ig unfolding in cardiomyocytes caused elevated stiffness under acidic stress, but HSP27 or αB-crystallin suppressed this stiffening. In diseased human muscle and heart, both sHSPs associated with the titin springs, in contrast to the cytosolic/Z-disk localization seen in healthy muscle/heart. We conclude that aggregation of unfolded titin Ig domains stiffens myocytes and that sHSPs translocate to these domains to prevent this aggregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号