首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   622篇
  免费   57篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   6篇
  2019年   9篇
  2018年   13篇
  2017年   4篇
  2016年   18篇
  2015年   25篇
  2014年   29篇
  2013年   36篇
  2012年   22篇
  2011年   30篇
  2010年   33篇
  2009年   40篇
  2008年   30篇
  2007年   24篇
  2006年   36篇
  2005年   35篇
  2004年   20篇
  2003年   15篇
  2002年   17篇
  2001年   17篇
  2000年   11篇
  1999年   11篇
  1998年   17篇
  1997年   18篇
  1996年   11篇
  1995年   17篇
  1994年   8篇
  1993年   14篇
  1992年   9篇
  1991年   4篇
  1989年   4篇
  1988年   13篇
  1987年   5篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1983年   5篇
  1982年   19篇
  1981年   5篇
  1979年   3篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有679条查询结果,搜索用时 15 毫秒
1.
NADH diferric transferrin reductase in liver plasma membrane   总被引:6,自引:0,他引:6  
Evidence is presented that rat liver plasma membranes contain a distinct NADH diferric transferrin reductase. Three different assay procedures for demonstration of the activity are described. The enzyme activity is highest in isolated plasma membrane, and activity in other internal membranes is one-eighth or less than in plasma membrane. The activity is inhibited by apotransferrin and antitransferrin antibodies. Trypsin treatment of the membranes leads to rapid loss of the transferrin reductase activity as compared with NADH ferricyanide reductase activity. Erythrocyte plasma membranes, which lack transferrin receptors, show no diferric transferrin reductase activity, although NADH ferricyanide reductase is present. The transferrin reductase is inhibited by agents that inhibit diferric transferrin reduction by intact cells and is activated by CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfate) detergent. Inhibitors of mitochondrial electron transport have no effect on the activity. We propose that the NADH diferric transferrin reductase in plasma membranes measures the activity of the enzyme that causes the reduction of diferric transferrin by intact cells. This transmembrane electron transport system requires the transferrin receptor for diferric transferrin reduction. Because the transmembrane electron transport has been shown to stimulate cell growth, the reduction of diferric transferrin at the cell surface may be an important function for diferric transferrin in stimulation of cell growth, in addition to its role in iron transport.  相似文献   
2.
3.
4.
5.
Villalba  J. M.  Navarro  F.  Roldán  J. M.  González-Reyes  J. A.  Navas  P. 《Protoplasma》1994,178(3-4):87-96
Summary Expression of various sugar residues on the plasma membrane of frog (Rana perezi) epidermal cells at different stages of differentiation has been monitored with the use of a battery of HRP-conjugated lectins. In paraffin-embedded tissue, mannose residues (stained by Concanavalin A) were detected at the keratinocyte cell surface in all epidermal strata. However,Lens culinaris agglutinin (LCA), also specific for mannose, specifically stained the plasma membrane of cells from the stratum germinativum. Expression of N-acetyl-glucosamine (GlcNAc), labelled with wheat germ agglutinin (WGA), was maximum at the cell surface of basal cells and progressively decreased through the stratum spinosum. Galactose (Gal) and N-acetyl-galactosamine (GalNAc) residues, labelled withGriffonia simplicifolia I (GS I) andGlycine max (SBA) agglutinins, respectively, were expressed according to the degree of differentiation in amphibian epidermal cells. Sialic acid-containing glycoproteins, labelled withLimax flavus agglutinin (LFA), were found in the outermost plasma membrane of the replacement cell layer and stratum corneum. Glycoproteins responsible for the observed lectin-binding patterns have been identified by staining on nitrocellulose filters after electrophoresis of solubilized plasma membrane fractions and Western blotting. Changes at the level of glycosylation of plasma membrane glycoproteins as epidermal cells differentiate are discussed on the basis of a progressive addition of Gal residues. Integral membrane proteins have been solubilized with the non-denaturing detergent CHAPS and glycoproteins containing terminal Gal residues, that are expressed according to the degree of differentiation in frog epidermis, have been partially purified by affinity chromatography on a GS I-Sepharose 4 B column. The purified fraction was composed by four acidic glycoproteins with isoelectric points between 4.6 and 5.2 and, in SDS-gels gave five major protein bands with approximate molecular weights of 148, 140, 102, 60, and 52 kDa in SDS-gels. The 102 and 52 kDa bands correspond to the a and subunits of amphibian epidermal Na+,K+-ATPase as demonstrated by specific staining with a polyclonal antibody against the catalytic subunit of pig kidney proton pump and staining with lectins GS I, GS II, and WGA. Possible relationships between higher molecular weight proteins and the constituents of intramembranous particles from the outermost plasma membranes of the replacement cell layer and the stratum corneum are also discussed.Abbreviations BSA bovine serum albumin - CHAPS (3-[(cholamidopropyl) dimethyl-ammonio] 1-propanesulfonate) - Con A Canavalia ensiformis agglutinin - DTT dithiothreitol - Gal galactose - GalNAc N-acetyl-D-galactosamine - GlcNAc N-acetyl-D-glucosamine - GS I Griffonia simplicifolia agglutinin I - GS II Griffonia simplicifolia agglutinin II - HRP horseradish peroxidase - LFA Limax flavus agglutinin - LCA Lens culinaris agglutinin - NDPAGIF non-denaturing polyacrylamide gel isoelectric focusing - PAGE polyacrylamide gel electrophoresis - PAP peroxidase-antiperoxidase - PBS phosphate buffered saline - PMSF phenyl methyl sulphonyl fluoride - RCL replacement cell layer - SBA soybean agglutinin (Glycine max) - SB stratum basal - SDS sodium dodecyl sulphate - SG stratum granulosum - SS stratum spinosum - UEA I Ulex europaeus agglutinin I - WGA wheat germ (Triticum vulgaris) agglutinin  相似文献   
6.
The phylogeny of Greya Busck (Lepidoptera: Prodoxidae) was inferred from nucleotide sequence variation across a 765-bp region in the cytochrome oxidase I and II genes of the mitochondrial genome. Most parsimonious relationships of 25 haplotypes from 16 Greya species and two outgroup genera (Tetragma and Prodoxus) showed substantial congruence with the species relationships indicated by morphological variation. Differences between mitochondrial and morphological trees were found primarily in the positions of two species, G. variabilis and G. pectinifera, and in the branching order of the three major species groups in the genus. Conflicts between the data sets were examined by comparing levels of homoplasy in characters supporting alternative hypotheses. The phylogeny of Greya species suggests that host-plant association at the family level and larval feeding mode are conservative characters. Transition/transversion ratios estimated by reconstruction of nucleotide substitutions on the phylogeny had a range of 2.0-9.3, when different subsets of the phylogeny were used. The decline of this ratio with the increase in maximum sequence divergence among taxa indicates that transitions are masked by transversions along deeper internodes or long branches of the phylogeny. Among transitions, substitutions of A-->G and T-->C outnumbered their reciprocal substitutions by 2-6 times, presumably because of the approximately 4:1 (77%) A+T-bias in nucleotide base composition. Of all transversions, 73%-80% were A<-->T substitutions, 85% of which occurred at third positions of codons; these estimates did not decrease with an increase in maximum sequence divergence of taxa included in the analysis. The high frequency of A<-->T substitutions is either a reflection or an explanation of the 92% A+T bias at third codon positions.   相似文献   
7.
The NADH oxidase activity of isolated vesicles of soybean (Glycine max cv Williams 82) plasma membranes and elongation growth of 1-cm-long hypocotyl segments were stimulated by auxins (indole-3-acetic acid or 2,4-dichlorophenoxyacetic acid [2,4-D]). The auxin-induced stimulations of both NADH oxidase and growth were prevented by the thiol reagents N-ethylmaleimide, p-chloromercuribenzoate, 5,5[prime]-dithiobis(2-nitrophenylbenzoic acid), dithiothreitol, and reduced glutathione. These same reagents largely were without effect on or stimulated slightly the basal levels of NADH oxidase and growth when assayed in the absence of auxins. In the presence of dithiothreitol or reduced glutathione, both 2,4-D and indole-3-acetic acid either failed to stimulate or inhibited the NADH oxidase activity. The rapidity of the response at a given concentration of thiol reagent and the degree of inhibition of the 2,4-D-induced NADH oxidase activity were dependent on order of reagent addition. If the thiol reagents were added first, auxin stimulations were prevented. If auxins were added first, the inhibitions by the thiol reagents were delayed or higher concentrations of thiol reagents were required to achieve inhibition. The results demonstrate a fundamental difference between the auxin-stimulated and the constitutive NADH oxidase activities of soybean plasma membranes that suggest an involvement of active-site thiols in the auxin-stimulated but not in the constitutive activity.  相似文献   
8.
Summary Ascorbate is stabilized in the presence of HL-60 cells. Our results showed that cAMP derivatives and agents that increase cAMP stimulate the ability of HL-60 cells to stabilize ascorbate. On the other hand, tunicamycin, a glycosilation-interfering agent, inhibited this ability. The ascorbate stabilization in the presence of HL-60 cells has been questioned as a simple chemical effect. Further properties and controls about the enzymatic nature of this stabilization are described and discussed. This data, together with hormonal regulation, support the hypothesis that an enzymatic redox system located at the plasma membrane is responsible of the extracellular ascorbate stabilization by HL-60 cells.Abbreviations AFR ascorbate free radicals - FCS fetal calf serum - Sp-cAMPS Sp-cyclic adenosine monophosphothionate - Rp-cAMPS Rp-cyclic adenosine monophosphothionate  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号