首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2009年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The causes and timing of seed death in early regeneration process of Siebold's beech (Fagus crenata Blume) was studied at 15 sites along a snowfall gradient in Japan, in order to clarify why the seedling density of the species has geographic difference remarkably. Seed production did not significantly differ along the snowfall gradient. Pre-dispersal seed mortality by insect damage was higher at sites with light snowfall than at sites with heavy snowfall, but this only seemed to be a minor factor influencing the population. A large proportion of the viable nuts that fall in autumn ware killed in winter before germination. Winter mortality was much higher at sites with thin snow cover than that at sites with thick snow cover, and this factor was strongly correlated with the geographic variation of seedling regeneration probability. There was little seed mortality by winter desiccation. The main factor contributing to the geographic difference seemed to be a seed predation by rodents in winter. Deep snow cover may reduce the success of rodents finding seeds in winter. Thus the observed relationship between snowpack depth and early mortality may be due to an indirect effect through the process of seed predation.p>  相似文献   
2.
Protrudin is a protein that contains a Rab11-binding domain and a FYVE (lipid-binding) domain and that functions to promote neurite formation through interaction with the GDP-bound form of Rab11. Protrudin also contains a short sequence motif designated FFAT (two phenylalanines in an acidic tract), which in other proteins has been shown to mediate binding to vesicle-associated membrane protein-associated protein (VAP). We now show that protrudin associates and colocalizes with VAP-A, an isoform of VAP expressed in the endoplasmic reticulum. Both the interaction between protrudin and VAP-A as well as the induction of process formation by protrudin were markedly inhibited by mutation of the FFAT motif. Furthermore, depletion of VAP-A by RNA interference resulted in mislocalization of protrudin as well as in inhibition of neurite outgrowth induced by nerve growth factor in rat pheochromocytoma PC12 cells. These defects resulting from depletion of endogenous rat VAP-A in PC12 cells were corrected by forced expression of (RNA interference-resistant) human VAP-A but not by VAP-A mutants that have lost the ability to interact with protrudin. These results suggest that VAP-A is an important regulator both of the subcellular localization of protrudin and of its ability to stimulate neurite outgrowth.The molecular mechanisms that underlie neurite formation include both cytoskeletal remodeling and membrane trafficking. Membrane components are transported in a directional manner within the cell by a membrane recycling system, resulting in expansion of the surface area of the neurite. The small GTPase Rab11 regulates membrane recycling and constitutive exocytosis (1), and it is thought to contribute to neurite formation through regulation of directional membrane transport.We have recently identified protrudin as a key regulator of Rab11-dependent membrane trafficking during neurite extension. Protrudin interacts with FKBP38 (also known as FKBP8) (2), which is a member of the immunophilin family of proteins that bind the immunosuppressant drug FK506 (3). FKBPs are multifunctional proteins that regulate the folding or export of other proteins as a result of their peptidyl-prolyl cis-trans-isomerase activity (4). Protrudin was found to interact with FKBP38, but not with other FKBP proteins such as FKBP12 or FKBP52 (5). Protrudin is hyperphosphorylated in Fkbp38-/- mice, which manifest abnormal extension of nerve fibers (5).Protrudin contains a Rab11-binding domain (RBD11), two transmembrane domains (TM1 and TM2),2 an FFAT (two phenylalanines in an acidic tract) motif (6), a coiled-coil domain, and a FYVE domain (7). These structural characteristics suggested that protrudin might function in membrane trafficking, particularly in membrane recycling. The gene encoding ZFYVE27 (a synonym of human protrudin) was recently found to be mutated in a German family with an autosomal dominant form of hereditary spastic paraplegia (AD-HSP), which is characterized by selective degeneration of axons (8). The phenotype of the affected individuals is similar to that of patients with AD-HSP caused by mutation of spastin, a protein implicated in neuronal vesicular trafficking (9), and protrudin was shown to interact with spastin (8). These findings support the notion that protrudin plays a key role in Rab11-mediated directional membrane transport during neurite formation.The subcellular localization of protrudin is dynamic. Whereas it is localized to the endoplasmic reticulum (ER) under basal conditions, nerve growth factor (NGF) triggers the translocation of protrudin from the ER, via recycling endosomes, to the tip of membrane protrusions in neuronal cells. Given that the FFAT motif is thought to serve as an ER targeting signal (6), this motif might be expected to contribute both to the localization of protrudin to the ER and to the regulation of neurite formation by this protein. The FFAT motif (consensus amino acid sequence of EFFDAXE, where X is any amino acid) is present in several lipid-binding proteins that are implicated in the transfer of lipids between the ER and other organelles such as the Golgi apparatus (10, 11). Vesicle-associated membrane protein-associated protein (VAP) interacts with these lipid-binding proteins through their FFAT motifs (6, 11, 12). The VAP-A and VAP-B isoforms of mammalian VAP are ER-resident type II membrane proteins (13) that are encoded by different genes (14); VAP-C is a splicing variant of VAP-B that lacks the membrane-spanning domain. VAP-A and VAP-B share ∼60% amino acid sequence identity, form homo- or heterodimers, and are expressed in many tissues (14-16). In addition to their localization to the ER (16), VAP-A and VAP-B are present in a wide range of intracellular membranes or membrane structures, including the Golgi, the ER-Golgi intermediate compartment (17), tight junctions (18), neuromuscular junctions (19), recycling endosomes, and the plasma membrane (20).We have now identified VAP-A and VAP-B as proteins that interact with protrudin. Protrudin preferentially interacts with VAP-A via its FFAT motif, and this motif was found to be required for the protrudin-dependent formation of membrane protrusions in HeLa cells. In addition, depletion of VAP-A by RNA interference resulted in inhibition of NGF-induced neurite outgrowth in the PC12 rat pheochromocytoma cell line. This inhibition of neurite outgrowth was reversed by expression of human VAP-A but not by that of VAP-A mutants that have lost the ability to bind to protrudin. These results suggest that interaction of protrudin with VAP-A is important both for its ER retention and for its ability to stimulate neurite formation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号