首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   5篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
  1999年   1篇
  1996年   1篇
  1981年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Genomic analysis indicated that Edwardsiella ictaluri encodes a putative urease pathogenicity island containing the products of nine open reading frames, including urea and ammonium transporters. In vitro studies with wild-type E. ictaluri and a ureG::kan urease mutant strain indicated that E. ictaluri is significantly tolerant of acid conditions (pH 3.0) but that urease activity is not required for acid tolerance. Growth studies demonstrated that E. ictaluri is unable to grow at pH 5 in the absence of urea but is able to elevate the environmental pH from pH 5 to pH 7 and grow when exogenous urea is available. Substantial production of ammonia was observed for wild-type E. ictaluri in vitro in the presence of urea at low pH, and optimal activity occurred at pH 2 to 3. No ammonia production was detected for the urease mutant. Proteomic analysis with two-dimensional gel electrophoresis indicated that urease proteins are expressed at both pH 5 and pH 7, although urease activity is detectable only at pH 5. Urease was not required for initial invasion of catfish but was required for subsequent proliferation and virulence. Urease was not required for initial uptake or survival in head kidney-derived macrophages but was required for intracellular replication. Intracellular replication of wild-type E. ictaluri was significantly enhanced when urea was present, indicating that urease plays an important role in intracellular survival and replication, possibly through neutralization of the acidic environment of the phagosome.Identification of virulence factors is vitally important to an understanding of the pathogenesis of Edwardsiella ictaluri and to the development of methods for controlling the spread of disease. Although the pathogenesis of E. ictaluri was reviewed in 1993 (28, 31), recent reports demonstrated that E. ictaluri is a facultative intracellular pathogen (3) and that a type III secretion system is required for intracellular survival and replication within channel catfish head kidney-derived macrophages (HKDM) (30). Using signature-tagged mutagenesis (STM) in an immersion challenge model for E. ictaluri, Thune et al. (30) identified 50 transconjugants carrying transposon insertions in genes required for survival and replication in the channel catfish host. Two of those mutants had insertions in genes encoding homologs of UreG and UreF, proteins that are essential for the production of an active urease enzyme in other bacteria (6, 10, 14, 26). UreG is a GTP-binding accessory protein that functions in energy-dependent assembly of the urease holoenzyme (19), while UreF is a urease accessory protein that functions in the generation or delivery of carbon dioxide to the urease metallocenter assembly site (19). Both the ureG and ureF mutant strains were further characterized in a competitive challenge with the wild-type (WT) parental strain and were confirmed to be significantly attenuated (30). The identification of two mutants with insertions in urease-associated genes suggests an important role for urease activity in E. ictaluri pathogenesis, despite the fact that E. ictaluri is urease negative in standard biochemical tests. Consequently, the objectives of this study are to characterize the E. ictaluri urease pathogenicity island (PAI), to evaluate conditions for E. ictaluri urease activity, and to establish a possible role for urease in E. ictaluri pathogenesis.  相似文献   
5.
6.
7.
8.
9.
10.
The relationships of diatom species to selected physical and chemical parameters in the streams of the Uintah Basin of Utah were studied through four seasons of 1977–1978. Niche center gradient analysis, cluster analysis and correlation analysis were performed.Achnanthes minutissima, Cyclotella meneghiniana, Cymbella minuta var.latens, Fragilaria capucina, andNavicula secreta var.apiculata appear to be indicator species of high or low levels of certain water quality parameters. Several other species also showed meaningful relationships to selected physical and chemical parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号