首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   10篇
  2023年   1篇
  2022年   7篇
  2021年   4篇
  2020年   7篇
  2019年   8篇
  2018年   5篇
  2017年   2篇
  2016年   5篇
  2015年   7篇
  2014年   10篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   9篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1994年   1篇
排序方式: 共有106条查询结果,搜索用时 31 毫秒
1.
Spore-producing organisms have small dispersal units enabling them to become widespread across continents. However, barriers to gene flow and cryptic speciation may exist. The common, haploid peatmoss Sphagnum magellanicum occurs in both the Northern and Southern hemisphere, and is commonly used as a model in studies of peatland ecology and peatmoss physiology. Even though it will likely act as a rich source in functional genomics studies in years to come, surprisingly little is known about levels of genetic variability and structuring in this species. Here, we assess for the first time how genetic variation in S. magellanicum is spatially structured across its full distribution range (Northern Hemisphere and South America). The morphologically similar species S. alaskense was included for comparison. In total, 195 plants were genotyped at 15 microsatellite loci. Sequences from two plastid loci (trnG and trnL) were obtained from 30 samples. Our results show that S. alaskense and almost all plants of S. magellanicum in the northern Pacific area are diploids and share the same gene pool. Haploid plants occur in South America, Europe, eastern North America, western North America, and southern Asia, and five genetically differentiated groups with different distribution ranges were found. Our results indicate that S. magellanicum consists of several distinct genetic groups, seemingly with little or no gene flow among them. Noteworthy, the geographical separation of diploids and haploids is strikingly similar to patterns found within other haploid Sphagnum species spanning the Northern Hemisphere. Our results confirm a genetic division between the Beringian and the Atlantic that seems to be a general pattern in Sphagnum taxa. The pattern of strong genetic population structuring throughout the distribution range of morphologically similar plants need to be considered in future functional genomic studies of S. magellanicum.  相似文献   
2.
Angiogenesis is a vital step in tissue regeneration. Hence, the current study aimed to prepare oxidized dextran (Odex)/collagen (Col)-hydrogels with laminin (LMN), as an angiogenic extracellular matrix (ECM) component, for promoting human umbilical vein endothelial cell (HUVEC) proliferation and function. Odex/Col scaffolds were constructed at various concentrations and temperatures. Using oscillatory rheometry, scanning electron microscopy (SEM), and cell viability testing, the scaffolds were characterized, and then HUVEC proliferation and function was compared with or without LMN. The gelation time could be modified by altering the Odex/Col mass ratio as well as the temperature. SEM showed that Odex/Col hydrogels had a more regular three-dimensional (3D) porous structure than the Col hydrogels. Moreover, HUVECs grew faster in the Col scaffold (12 mg/mL), whereas the Odex (30 mg/mL)/Col (6 mg/mL) scaffold exhibited the lowest apoptosis index. Furthermore, the expression level of vascular endothelial growth factor (VEGF) mRNA in the group without LMN was higher than that with LMN, and the Odex (30 mg/mL)/Col (6 mg/mL) scaffold without LMN had the highest VEGF protein secretion, allowing the cells to survive and function effectively. Odex/Col scaffolds, with or without LMN, are proposed as a tissue engineering construct to improve HUVEC survival and function for angiogenesis.  相似文献   
3.
Water stress is one of the main abiotic factors that reduces plant growth, mainly due to high evaporative demand and low water availability. In order to evaluate the effects of drought stress on certain morphological and physiological characteristics of two canola cultivars, we conducted a factorial experiment based on a completely randomized design. The findings show that drought stress exacerbations result in the plant's response to stress due to increased canola resistance caused by changes in plant pigments, proline, catalase, ascorbate peroxidase, peroxidase, superoxide dismutase and malondialdehyde, glucose, galactose, rhamnose and xylose. These in turn ultimately influence the morphological characteristics of canola. Drought stress reduces the concentration of carotenoids, chlorophyll a, chlorophyll b, total chlorophylls; however, glucose, galactose, rhamnose, xylose, proline, catalase, ascorbate peroxidase, peroxidase, superoxide dismutase, malondialdehyde (in leaves and roots) and the chlorophyll a and b ratios were increased. Reduction of plant height, stem height, root length, fresh and dry weight of canola treated with 300 g/l PEG compared to non‐treatment were 0.264, 0.236, 0.394, 0.183 and 0.395, respectively. From the two canola cultivars, the morphological characteristics of the NIMA increased compared to the Ks7 cultivar. Interaction effects of cultivar and drought stress showed that NIMA cultivar without treatment had the highest number of morphological characteristics such as carotenoid concentration, chlorophyll a, chlorophyll b, total chlorophylls a and b, whereas the cultivar with 300 g/l PEG (drought stress) had the highest amount of proline, malondialdehyde, soluble sugars and enzymes in leaves and roots. Increasing activity of oxidative enzymes and soluble sugars in canola under drought stress could be a sign of their relative tolerance to drought stress.  相似文献   
4.
Hydrobiologia - The genus Rutilus is widespread in the western and central Palearctic region. In the Caspian Sea, the taxonomic status of different populations of Rutilus lacustris has...  相似文献   
5.
Hydrobiologia - Many populations of Caspian Sea trout (Salmo caspius)—a nationally endangered species in Iran—have been extirpated or depleted due to anthropogenic impacts. The Lar...  相似文献   
6.
This study addresses mechanisms for the generation and selection of visual behaviors in anamniotes. To demonstrate the function of these mechanisms, we have constructed an experimental platform where a simulated animal swims around in a virtual environment containing visually detectable objects. The simulated animal moves as a result of simulated mechanical forces between the water and its body. The undulations of the body are generated by contraction of simulated muscles attached to realistic body components. Muscles are driven by simulated motoneurons within networks of central pattern generators. Reticulospinal neurons, which drive the spinal pattern generators, are in turn driven directly and indirectly by visuomotor centers in the brainstem. The neural networks representing visuomotor centers receive sensory input from a simplified retina. The model also includes major components of the basal ganglia, as these are hypothesized to be key components in behavior selection. We have hypothesized that sensorimotor transformation in tectum and pretectum transforms the place-coded retinal information into rate-coded turning commands in the reticulospinal neurons via a recruitment network mimicking the layered structure of tectal areas. Via engagement of the basal ganglia, the system proves to be capable of selecting among several possible responses, even if exposed to conflicting stimuli. The anatomically based structure of the control system makes it possible to disconnect different neural components, yielding concrete predictions of how animals with corresponding lesions would behave. The model confirms that the neural networks identified in the lamprey are capable of responding appropriately to simple, multiple, and conflicting stimuli.  相似文献   
7.
Supergenes are nonrecombining genomic regions ensuring the coinheritance of multiple, coadapted genes. Despite the importance of supergenes in adaptation, little is known on how they originate. A classic example of supergene is the S locus controlling heterostyly, a floral heteromorphism occurring in 28 angiosperm families. In Primula, heterostyly is characterized by the cooccurrence of two complementary, self-incompatible floral morphs and is controlled by five genes clustered in the hemizygous, ca. 300-kb S locus. Here, we present the first chromosome-scale genome assembly of any heterostylous species, that of Primula veris (cowslip). By leveraging the high contiguity of the P. veris assembly and comparative genomic analyses, we demonstrated that the S-locus evolved via multiple, asynchronous gene duplications and independent gene translocations. Furthermore, we discovered a new whole-genome duplication in Ericales that is specific to the Primula lineage. We also propose a mechanism for the origin of S-locus hemizygosity via nonhomologous recombination involving the newly discovered two pairs of CFB genes flanking the S locus. Finally, we detected only weak signatures of degeneration in the S locus, as predicted for hemizygous supergenes. The present study provides a useful resource for future research addressing key questions on the evolution of supergenes in general and the S locus in particular: How do supergenes arise? What is the role of genome architecture in the evolution of complex adaptations? Is the molecular architecture of heterostyly supergenes across angiosperms similar to that of Primula?  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号