首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   9篇
  79篇
  2022年   7篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   8篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   7篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1994年   1篇
排序方式: 共有79条查询结果,搜索用时 0 毫秒
1.
Spore-producing organisms have small dispersal units enabling them to become widespread across continents. However, barriers to gene flow and cryptic speciation may exist. The common, haploid peatmoss Sphagnum magellanicum occurs in both the Northern and Southern hemisphere, and is commonly used as a model in studies of peatland ecology and peatmoss physiology. Even though it will likely act as a rich source in functional genomics studies in years to come, surprisingly little is known about levels of genetic variability and structuring in this species. Here, we assess for the first time how genetic variation in S. magellanicum is spatially structured across its full distribution range (Northern Hemisphere and South America). The morphologically similar species S. alaskense was included for comparison. In total, 195 plants were genotyped at 15 microsatellite loci. Sequences from two plastid loci (trnG and trnL) were obtained from 30 samples. Our results show that S. alaskense and almost all plants of S. magellanicum in the northern Pacific area are diploids and share the same gene pool. Haploid plants occur in South America, Europe, eastern North America, western North America, and southern Asia, and five genetically differentiated groups with different distribution ranges were found. Our results indicate that S. magellanicum consists of several distinct genetic groups, seemingly with little or no gene flow among them. Noteworthy, the geographical separation of diploids and haploids is strikingly similar to patterns found within other haploid Sphagnum species spanning the Northern Hemisphere. Our results confirm a genetic division between the Beringian and the Atlantic that seems to be a general pattern in Sphagnum taxa. The pattern of strong genetic population structuring throughout the distribution range of morphologically similar plants need to be considered in future functional genomic studies of S. magellanicum.  相似文献   
2.
Abstract

Cholecystokinin (CCK) is one of the most studied neuropeptides in the brain. In this study, we investigated the effects of CCK-8s and LY225910 (CCK2 receptor antagonist) on properties of neuronal response to natural stimuli (whisker deflection) in deep layers of rat barrel cortex. This study was done on 20 male Wistar rats, weighing 230–260?g. CCK-8s (300?nmol/rat) and LY225910 (1?µmol/rat) were administered intracerebroventricularly (ICV). Neuronal responses to deflection of principal (PW) and adjacent (AW) whiskers were recorded in the barrel cortex using tungsten microelectrodes. Computer controlled mechanical displacement was used to deflect whiskers individually or in combination at 30?ms inter-stimulus intervals. ON and OFF responses for PW and AW deflections were measured. A condition-test ratio (CTR) was computed to quantify neuronal responses to whisker interaction. ICV administration of CCK-8s and LY225910 had heterogeneous effects on neuronal spontaneous activity, ON and OFF responses to PW and/or AW deflections, and CTR for both ON and OFF responses. The results of this study demonstrated that CCK-8s can modulate neuronal response properties in deep layers of rat barrel cortex probably via CCK2 receptors.  相似文献   
3.
Hydrobiologia - The genus Rutilus is widespread in the western and central Palearctic region. In the Caspian Sea, the taxonomic status of different populations of Rutilus lacustris has...  相似文献   
4.
Hydrobiologia - Many populations of Caspian Sea trout (Salmo caspius)—a nationally endangered species in Iran—have been extirpated or depleted due to anthropogenic impacts. The Lar...  相似文献   
5.
Supergenes are nonrecombining genomic regions ensuring the coinheritance of multiple, coadapted genes. Despite the importance of supergenes in adaptation, little is known on how they originate. A classic example of supergene is the S locus controlling heterostyly, a floral heteromorphism occurring in 28 angiosperm families. In Primula, heterostyly is characterized by the cooccurrence of two complementary, self-incompatible floral morphs and is controlled by five genes clustered in the hemizygous, ca. 300-kb S locus. Here, we present the first chromosome-scale genome assembly of any heterostylous species, that of Primula veris (cowslip). By leveraging the high contiguity of the P. veris assembly and comparative genomic analyses, we demonstrated that the S-locus evolved via multiple, asynchronous gene duplications and independent gene translocations. Furthermore, we discovered a new whole-genome duplication in Ericales that is specific to the Primula lineage. We also propose a mechanism for the origin of S-locus hemizygosity via nonhomologous recombination involving the newly discovered two pairs of CFB genes flanking the S locus. Finally, we detected only weak signatures of degeneration in the S locus, as predicted for hemizygous supergenes. The present study provides a useful resource for future research addressing key questions on the evolution of supergenes in general and the S locus in particular: How do supergenes arise? What is the role of genome architecture in the evolution of complex adaptations? Is the molecular architecture of heterostyly supergenes across angiosperms similar to that of Primula?  相似文献   
6.
7.
8.
9.
Two experiments were conducted to investigate the effect of inoculating Vicia faba plants (broad beens) raised in clean and oily sand with nodule-forming rhizobia and plant-growth-promoting rhizobacteria (PGPR) on growth of these plants in sand and to test whether this can improve the phytoremediation potential of this crop for oily desert areas. It was found that crude oil in sand at concentrations < 1.0% (w/w) enhanced the plant heights, their fresh and dry weights, the total nodule weights per plant, and the nitrogen contents of shoots and fruits. Similar enhancing effects were recorded when roots of the young plants were inoculated with nodule bacteria alone, PGPR alone, or a mixture of one strain of nodule bacteria and one of the PGPR. Such plant growth effects were associated with a better phytoremediation potential of V. faba plants for oily sand. The total numbers of oil-utilizing bacteria increased in the rhizosphere and more hydrocarbons were eliminated in sand close to the roots. The nodule bacteria tested were two strains of Rhizobium leguminosarum and the PGPR were Pseudomonas aeruginosa and Serratia liquefaciens. The four strains were found to use crude oil, n-octadecane, and phenanthrene as sole sources of carbon and energy. It was concluded that coinoculation of V. faba plant roots in oily sand with nodule bacteria and PGPR enhances the phytoremediation potential of this plant for oily desert sand through improving plant growth and nitrogen fixation.  相似文献   
10.
Bone marrow microenvironment(BMM) is the main sanctuary of leukemic stem cells(LSCs) and protects these cells against conventional therapies. However, it may open up an opportunity to target LSCs by breaking the close connection between LSCs and the BMM. The elimination of LSCs is of high importance, since they follow cancer stem cell theory as a part of this population. Based on cancer stem cell theory, a cell with stem cell-like features stands at the apex of the hierarchy and produces a heterogeneous population and governs the disease.Secretion of cytokines, chemokines, and extracellular vesicles, whether through autocrine or paracrine mechanisms by activation of downstream signaling pathways in LSCs, favors their persistence and makes the BMM less hospitable for normal stem cells. While all details about the interactions of the BMM and LSCs remain to be elucidated, some clinical trials have been designed to limit these reciprocal interactions to cure leukemia more effectively. In this review, we focus on chronic myeloid leukemia and acute myeloid leukemia LSCs and their milieu in the bone marrow, how to segregate them from the normal compartment, and finally the possible ways to eliminate these cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号