首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   5篇
  57篇
  2016年   1篇
  2013年   8篇
  2011年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1994年   1篇
  1992年   3篇
  1991年   3篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   5篇
  1971年   1篇
  1970年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
The preferred conformations of deoxyribo and ribonucleoside 3'-methylphosphonates are analysed by minimizing the conformational energy as a function of all the major parameters including the sugar ring for both the S- and R-isomers. The results show that neither the substitution nor the nature of the diastereomer affects significantly the preferred conformations compared to the naturally occurring nucleoside 3'-phosphates. The preferred range of C3'-O3' bond torsions or the phase angles of pseudorotation (P) of the sugar are unaffected. The chiral substitution on the phosphate always adopts a conformation distal to the secondary C3' carbon atom in the minimum energy conformational state. Further, it introduces certain restrictions on the preferred range of P-O3' torsions depending on the methylphosphonate configuration. Methylphosphonate, especially the S-isomer, renders the normal gauche- range of P-O3' bond torsions responsible for the stacked helical duplexes to be energetically unfavourable besides introducing a high energy barrier between trans and gauche conformations. Therefore it is suggested that duplexes with S-methylphosphonate may favour extended phosphodiester conformations. These factors explain the observed lower melting temperature as well as the downfield shifts in the 31P signals in duplexes containing the S-isomer.  相似文献   
2.
d(G-C)n oligodeoxynucleotides (with n varying from 3 to 7) were studied by the circular dichroism technique in 5 M-NaCl. Contrary to what was previously found with the d(C-G)n series in the same solvent, the left-handed double-stranded Z-conformation appears less stable than the B-form for low n values. The influence of base sequence on the relative stability of B- and Z-conformations for the two series is discussed.  相似文献   
3.
Y S Latha  N Yathindra 《Biopolymers》1992,32(3):249-269
The preferred conformations of ribo and deoxyribo alpha-nucleosides and alpha-nucleotides, the stereoisomers of the naturally occurring beta-isomers, are worked out by minimizing the conformational energy as a function of all the major parameters including the sugar ring conformations along the pseudorotation path. The results of the studies bring out certain distinct conformational features that are at variance with their beta counterparts. The range of glycosyl conformations are found to be not only quite restricted here but favor predominantly the anti conformation. The syn glycosyl conformation for the entire region of P values are found to be energetically less favorable, with the barrier to anti in equilibrium with syn interconversion being higher especially in alpha-ribonucleosides. The energetically preferred range of pseudorotation phase angles (P) is also considerably restricted and P values corresponding to the C1'-exo range of sugars are highly unfavorable for alpha-nucleosides, in sharp contrast to the broad range of sugar ring conformations favored by beta-isomers. While both trans congruent to 180 degrees and skew congruent to 270 degrees conformations around the C3'-O3' (phi') bond are favored for alpha-3'-nucleotides with deoxyribose sugars, ribose sugars seem to favor only the skew values of phi'. Most interestingly and in sharp contrast to beta-stereoisomers, an energy barrier is encountered at P values corresponding to O4'-endo sugars. This suggests that the possible sugar pucker interconversion between C2'-endo/C3'-exo and C3'-endo/C2'-exo in alpha-anomers could take place only through the O4'-exo region. Likewise the possible path of anti in equilibrium with syn interconversion in alpha-nucleosides is not via high anti, in sharp contrast to beta-nucleosides. These observations should be borne in mind while assigning the sugar ring conformers in alpha-nucleosides and those containing them from nmr investigations. Comparison of the results with beta-anomers seem to suggest on the whole a lack of conformational variability or the restricted nature of alpha-stereoisomers. This could be one of the reasons for its nonselection in the naturally occurring nucleic acids.  相似文献   
4.
A systematic analysis has been carried out to examine all the stereochemically possible bifurcated hydrogen bonds including those of cross strand type between propeller twisted base pairs in DNA double helices by stereochemical considerations involving base pairs alone and by molecular mechanics studies on dimer and trimer duplexes. The results show that there are limited number of combinations of adjacent base pairs that would facilitate bifurcated cross-strand hydrogen bond (CSH). B-type helices concomitant with negative propeller twist seem to be more favored for the occurrence of CSH than canonical A-type helices because of slide in the latter. The results also demonstrate that helices with appropriate sequences may possess continuous run of these propeller twist driven cross strand hydrogen bonds indicating that they may in fact be considered as yet another general structural feature of DNA helices.  相似文献   
5.
Conformations of arabino nucleosides and nucleotides have been analyzed by semiempirical energy calculations. It is found that the change in the configuration of the O(2')-hydroxyl group in arabinoses compared to riboses exerts significant influence on the conformational priorities of the glycosyl and the exocyclic C(4')-C(5') bond torsions. While the anti conformations for the bases are preferred, the anti in equilibrium or formed from syn interconversion is considerably hampered compared to ribosides due to large energy barrier. Further the preferred anti glycosyl torsions are shifted to higher values for C(3')-endo puckers and in ribosides. While the gauche+ conformation around the C(4')-C(5') bond is favored for C(3')-endo arabinosides, it is strongly stabilized for C(2')-endo arabinosides only in the presence of the intrasugar hydrogen bond O(2')-H ... O(5'). The net attractive electrostatic interactions between the phosphate and the base stabilizes the preferred conformations of 5'-arabinonucleotides also.  相似文献   
6.
Abstract

A systematic analysis has been carried out to examine all the stereochemically possible bifurcated hydrogen bonds including those of cross strand type between propeller twisted base pairs in DNA double helices by stereochemical considerations involving base pairs alone and by molecular mechanics studies on dimer and trimer duplexes. The results show that there are limited number of combinations of adjacent base pairs that would facilitate bifurcated cross- strand hydrogen bond (CSH). B-type helices concomitant with negative propeller twist seem to be more favored for the occurrence of CSH than canonical A-type helices because of slide in the latter. The results also demonstrate that helices with appropriate sequences may possess continuous run of these propeller twist driven cross strand hydrogen bonds indicating that they may infact be considered as yet another general structural feature of DNA helices.  相似文献   
7.
Abstract

Molecular mechanics studies are performed on single stranded as well as base paired forms of dinucleoside methylphosphonates comprising different base sequences for both the Sand R-isomers of methylphosphonate (MP). S-MP produces noticeable distortions in the geometry, locally at the phosphate center, and this enables the stereochemical feasibility of compact g? g? phosphodiester. Besides, it tends to perturb the conformations around the P- 03′ and glycosyl bonds, causing minor variations in stacking interactions. In single stranded dinucleosides, the gain in adjacent base stacking interaction energies seems to be sufficient to overcome the barrier to P-03′ bond rotation arising due to S-MP…sugar interaction, and this results in transition to a compact phosphodiester (BI-type) from an initial extended phosphodiester (BII-type) conformation. Such a thing seems rather difficult in base pair constrained duplexes. Dinucleosides with R-MP behave analogous to normal phosphate duplexes as the methyl group is away from the sugar. It is found that dinucleoside methylphosphonates are energetically less favoured than the corresponding dinucleoside phosphates mainly due to the depletion of contributions from electrostatic attractive interactions involving the base and sugar with the methylphosphonate consequent to the nonionic nature of the latter. Neither S-MP nor R-MP seem to significantly alter the stereochemistry of duplex structure.  相似文献   
8.
The low affinity of peptide nucleic acid (PNA) to hybridize with DNA in the presence of a mismatch endows PNA with a high degree of discriminatory capacity that has been exploited in therapeutics for the selective inhibition of the expression of point-mutated genes. To obtain a structural basis for this intriguing property, molecular dynamics simulations are carried out on PNA x DNA duplexes formed at the Ki-ras proto-oncogene, comprising the point-mutated (GAT), and the corresponding wild-type (GGT) codon 12. The designed PNA forms an A...C mismatch with the wild-type sequence and a perfect A...T pair with the point mutated sequence. Results show that large movements in the pyrimidine base of the A...C mismatch cause loss of stacking, especially with its penultimate base, concomitant with a variable mismatch hydrogen bond, including its occasional absence. These, in turn, bring about dynamic water interactions in the vicinity of the mismatch. Enthalpy loss and the disproportionate entropy gain associated with these are implicated as the factors contributing to the increase in free energy and diminished stability of PNA x DNA duplex with the A...C mismatch. Absence of these in the isosequential DNA duplex, notwithstanding the A...C mismatch, is attributed to the differences in topology of PNA x DNA vis-à-vis DNA duplexes. It is speculated that similar effects might be responsible for the reduced stability observed in PNA x DNA duplexes containing other base pair mismatches, and also in mismatch containing PNA x DNA duplexes.  相似文献   
9.
The NMR structure of 2',5' d(GGGGCCCC) was determined to gain insights into the structural differences between 2',5'- and 3',5'-linked DNA duplexes that may be relevant in elucidating nature's choice of sugar-phosphate links to encode genetic information. The oligomer assumes a duplex with extended nucleotide repeats formed out of mostly N-type sugar puckers. With the exception of the 5'-terminal guanine that assumes the syn glycosyl conformation, all other bases prefer the anti glycosyl conformation. Base pairs in the duplex exhibit slide (-1.96 A) and intermediate values for X-displacement (-3.23 A), as in ADNA, while their inclination to the helical axis is not prominent. Major and minor grooves display features intermediate to A and BDNA. The duplex structure of iso d(GGGGCCCC) may therefore be best characterized as a hybrid of A and BDNA. Importantly, the results confirm that even 3' deoxy 2',5' DNA supports duplex formation only in the presence of distinct slide (>or=-1.6 A) and X-displacement (>or=-2.5 A) for base pairs, and hence does not favor an ideal BDNA topology characterized by their near-zero values. Such restrictions on base pair movements in 2',5' DNA, which are clearly absent in 3',5' DNA, are expected to impose constraints on its ability for deformability of the kind observed in DNA during its compaction and interaction with proteins. It is therefore conceivable that selection pressure relating to the optimization of topological features might have been a factor in the rejection of 2',5' links in preference to 3',5' links.  相似文献   
10.
Semiempirical potential energy calculations have been carried out for cyclic 2′,3′-nucleotides and their 5′-phosphorylated derivatives, which are the intermediates in the hydrolysis of RNA. Calculations have been performed for both purine and pyrimidine bases for the observed O(1′)-endo, O(1′)-exo and the unpuckered planar sugar ring conformations. It is found that the mode of sugar pucker largely determines the preferred conformations of these molecules. For cyclic 2′,3′-nucleotides themselves, the O(1′)-endo sugars show a preference for the syn glycosyl conformation while the O(1′)-exo sugars exclusively favor the anti conformation regardless of whether the base is a purine or pyrimidine. For the unpuckered planar sugar, the syn conformation is favored for purines and anti for pyrimidines. Both the gauche (+) (60°) and trans (180°) conformations about the C(4′)? C(5′) bond are favored for O(1′)-endo sugars, while the gauche (?) (300°) and trans (180°) are favored for O(1′)-exo sugars. On the contrary, the 5′-phosphorylated cyclic 2′,3′-nucleotides of both purines and pyrimidines show a preference for the anti-gauche (+) conformational combination about the glycosyl and C(4′)? C(5′) bonds for the O(1′)-endo sugars and the anti-trans combination for the O(1′)-exo sugars. The correlation between the phase angle of the sugar ring and the favored torsions about the glycosyl and the backbone C(4′)? C(5′) bonds as one traverses along the pseudorotational pathway of the sugar ring is examined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号