首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  2018年   1篇
  2015年   1篇
  2011年   1篇
  2010年   3篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1997年   3篇
  1996年   2篇
  1992年   1篇
  1991年   1篇
排序方式: 共有32条查询结果,搜索用时 453 毫秒
1.
2.
3.
4.
The synthesis and properties of fully modified 4′-thioDNAs, oligonucleotides consisting of 2′-deoxy-4′-thionucleosides, were examined. In addition to the known literature properties (preferable hybridization with RNA and resistance to endonuclease hydrolysis), we also observed higher resistance of 4′-thioDNA to 3′-exonuclease cleavage. Furthermore, we found that fully modified 4′-thioDNAs behaved like RNA molecules in their hybridization properties and structural aspect, at least in the case of the 4′-thioDNA duplex. This observation was confirmed by experiments using groove binders, in which a 4′-thioDNA duplex interacts with an RNA major groove binder, lividomycin A, but not with DNA groove binders, to give an increase in its thermal stability. Since a 4′-thioDNA duplex competitively inhibited the hydrolysis of an RNA duplex by RNase V1, it was not only the physical properties but also this biological data suggested that a 4′-thioDNA duplex has an RNA-like structure.  相似文献   
5.
Fully modified 4′-thioDNA, an oligonucleotide only comprising 2′-deoxy-4′-thionucleosides, exhibited resistance to an endonuclease, in addition to preferable hybridization with RNA. Therefore, 4′-thioDNA is promising for application as a functional oligonucleotide. Fully modified 4′-thioDNA was found to behave like an RNA molecule, but no details of its structure beyond the results of circular dichroism analysis are available. Here, we have determined the structure of fully modified 4′-thioDNA with the sequence of d(CGCGAATTCGCG) by NMR. Most sugars take on the C3′-endo conformation. The major groove is narrow and deep, while the minor groove is wide and shallow. Thus, fully modified 4′-thioDNA takes on the A-form characteristic of RNA, both locally and globally. The only structure reported for 4′-thioDNA showed that partially modified 4′-thioDNA that contained some 2′-deoxy-4′-thionucleosides took on the B-form in the crystalline form. We have determined the structure of 4′-thioDNA in solution for the first time, and demonstrated unexpected differences between the two structures. The origin of the formation of the A-form is discussed. The remarkable biochemical properties reported for fully modified 4′-thioDNA, including nuclease-resistance, are rationalized in the light of the elucidated structure.  相似文献   
6.
Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice. We found that Pyrrophenone, a cPLA2alpha-specific inhibitor, did not suppress the sPLA2-X-induced potent AA release and prostaglandin E2 formation in mouse spleen cells. Furthermore, the amount of AA released by sPLA2-X from spleen cells was not significantly altered by cPLA2alpha deficiency. These results suggest that sPLA2-X induces potent AA release without activation of cPLA2a, which might be relevant to eicosanoid production in some pathological states where cPLA2a is not activated.  相似文献   
7.
We used a modification of the alkaline single cell gel electrophoresis (SCG) (Comet) assay to test the in vivo genotoxicity of 6 heterocyclic amines, Trp-P-1 (25 mg/kg), Trp-P-2 (13 mg/kg), IQ (13 mg/kg), MeIQ (13 mg/kg), MeIQx (13 mg/kg) and PhIP (40 mg/kg), in mouse liver, lung, kidney, brain, spleen, bone marrow and stomach mucosa. Mice were sacrificed 1, 3, and 24 h after intraperitoneal injection. Trp-P-2, IQ, MeIQ, and MeIQx yielded statistically significant DNA damage in the stomach, liver, kidney, lung and brain; Trp-P-1 in the stomach, liver and lung; and PhIP in the liver, kidney and brain. None of the heterocyclic amines induced DNA damage in the spleen and bone marrow. Our results suggest that the alkaline SCG assay applied to multiple organs is a good way to detect organ-specific genotoxicity of heterocyclic amines in mammals.  相似文献   
8.
Phospholipase A(2) (PLA(2)) (EC 3.1.1.4) catalyzes hydrolysis of the sn-2 ester bond of glycerophospholipids. The enzyme is essential for the production of two classes of lipid mediators, fatty acid metabolites and lysophospholipid-related lipids, as well as being involved in the remodeling of membrane phospholipids. Among many mammalian PLA(2)s, cytosolic PLA(2)alpha (cPLA(2)alpha) plays a critical role in various physiological and pathophysiological conditions through generating lipid mediators. Here, we summarize the in vivo significance of cPLA(2)alpha, revealed from the phenotypes of cPLA(2)alpha-null mice, and properties of newly discovered cPLA(2) family enzymes. We also briefly introduce a quantitative lipidomics strategy using liquid chromatography-mass spectrometry, a powerful tool for the comprehensive analysis of lipid mediators.  相似文献   
9.
Acute respiratory distress syndrome (ARDS) is an acute lung injury of high mortality rate, and sepsis syndrome is one of the most frequent causes of ARDS. Metabolites of arachidonic acid, including thromboxanes and leukotrienes, are proinflammatory mediators and potentially involved in the development of ARDS. A key enzyme for the production of these inflammatory mediators is cytosolic phospholipase A(2) (cPLA(2)). Recently, it has been reported that arachidonyl trifluoromethyl ketone (ATK) is a potent inhibitor of cPLA(2). In the present study, we hypothesized that pharmacological intervention of cPLA(2) could affect acute lung injury. To test this hypothesis, we examined the effects of ATK in a murine model of acute lung injury induced by septic syndrome. The treatment with ATK significantly attenuated lung injury, polymorphonuclear neutrophil sequestration, and deterioration of gas exchange caused by lipopolysaccharide and zymosan administration. The current observations suggest that pharmacological intervention of cPLA(2) could be a novel therapeutic approach to acute lung injury caused by sepsis syndrome.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号