首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有19条查询结果,搜索用时 62 毫秒
1.
Cancer is caused by abnormal cell changes leading to uncontrolled cell growth. The specific characteristics of cancer cells, including the loss of apoptotic control and the ability to migrate into and invade the surrounding tissue, result in cancer cell metastasis to other parts of the body. Therefore, the inhibition of the proliferation, migration, and invasion of cancer cells are the principal goals in the treatment of cancer. This study aimed to investigate the inhibitory activity of nordentatin, a coumarin derivative isolated from Clausena harmandiana, regarding the proliferation and migration of human neuroblastoma cells (SH-SY5Y). Nordentatin at a concentration of 100 µM showed cell cytotoxicity toward SH-SY5Y that was significantly different from that of the control group (p < 0.01) at 24, 48, and 72 h. Moreover, nordentatin inhibited SH-SY5Y proliferation by inhibiting the antiapoptotic protein Mcl-1, leading to the cleavage of caspase-3 and resulting in the inhibition of a migratory protein, MMP-9, through the GSK-3 pathway (compared with cells treated with a GSK inhibitor). These results suggest that nordentatin inhibited the proliferation and migration of neuroblastoma cells through the GSK-3 pathway.  相似文献   
2.
In this study, Pseudomonas species were isolated from the rhizospheres of two plant hosts: rice (Oryza sativa cultivar Pathum Thani 1) and maize (Zea mays cultivar DK888). The genotypic diversity of isolates was determined on basis of amplified rDNA restriction analysis (ARDRA). This analysis showed that both plant varieties selected for two distinct populations of Pseudomonas. The actual biocontrol and plant promotion abilities of these strains was confirmed by bioassays on fungal (Verticillum sp., Rhizoctonia solani and Fusarium sp.) and bacterial (Ralstonia solanacearum and Bacillus subtilis) plant pathogens, as well as indole-3-acetic acid (IAA) production and carbon source utilization. There was a significant difference between isolates from rice and maize rhizosphere in terms of biological control against R.  solanacearum and B.  subtilis. Interestingly, none of the pseudomonads isolated from maize rhizosphere showed antagonistic activity against R.  solanacearum. This study indicated that the percentage of pseudomonad isolates obtained from rice rhizosphere which showed the ability to produce fluorescent pigments was almost threefold higher than pseudomonad isolates obtained from maize rhizosphere. Furthermore, the biocontrol assay results indicated that pseudomonad isolated from rice showed a higher ability to control bacterial and fungal root pathogens than pseudomonad isolates obtained from maize. This work clearly identified a number of isolates with potential for use as plant growth-promoting and biocontrol agents on rice and maize.  相似文献   
3.
Summary The aim of this research was to develop methods to use low-cost carbon compounds for rhizobial inoculant production. Five raw starch materials; steamed cassava, sticky rice, fresh corn, dry corn and sorghum were tested for sugar production by an amylase-producing fungus. Streamed cassava produced the highest amount of reducing sugar after fermentation. Bradyrhizobium japonicum USDA110, Azorhizobium caulinodans IRBG23, Rhizobium phaseoli TAL1383, Sinorhizobium fredii HH103, and Mesorhizobium ciceri USDA2429 were tested on minimal medium supplemented with reducing sugar obtained from cassava fermentation. All strains, except B. japonicum USDA110, could grow in medium containing cassava sugar derived from 100 g steamed cassava per litre, and the growth rates for these strains were similar to those in medium containing 0.5 (w/v) mannitol. The sugar derived from steamed cassava was further used for production of glycerol using yeast. After 1 day of yeast fermentation, the culture containing glycerol and heat-killed yeast cells, was used to formulate media for culturing bradyrhizobia. A formulation medium, FM4, with a glycerol concentration of 0.6 g/l and yeast cells (OD600 = 0.1) supported growth of B. japonicum USDA110 up to 3.61 × 109 c.f.u./ml in 7 days. These results demonstrate that steamed cassava could be used to provide cheap and effective carbon sources for rhizobial inoculant production.  相似文献   
4.
Mineral nturient defiencies are a major constraint limiting legume nitrogen fixation and yield. In this review general techniques for assessing nutrient involvement in symbiotic nitrogen fixation are described and specific methods are outlined for determining which developmental phase of the symbiosis is most sensitive to nutrient deficiency. The mineral nutrition of the Rhizobium component of the symbiosis is considered both as the free living organism in the soil and as bacteroids in root nodules. Rhizobial growth and survival in soils is not usually limited by nutrient availability. Multiplication of rhizobia in the legume rhizosphere is limited by low Ca availability. Nodule initiation is affected by severe Co deficiency through effects on rhizobia. Nodule development is limited by severe B deficiency via an effect on plant cell growth. Fe deficiency limits nodule development by affecting rhizobia and strains of rhizobia differ widely in their ability to acquire sufficient Fe for their symbiotic development. Nodule function requires more Mo than does the host plant, and in some symbioses nitrogen fixation may be specifically limited by low availability of Ca, Co, Cu and Fe. The importance of the peribacteriod membrane in determining nutrient availability to bacteroids is considered. It is concluded that the whole legume-Rhizobium symbiosis should be considered when improving legume growth and yield under nutrient stress conditions. Differences among rhizobial strains in their ability to obtain mineral nutrients from their environment may be agronomically important.  相似文献   
5.
The influence of five Thai soybean cultivars on nodulation competitiveness of four Bradyrhizobium japonicum strains was investigated. Cultures of B. japonicum strains THA5, THA6, USDA110 and SEMIA5019 were mixed with each other prior to inoculating germinated soybean seeds growing in Leonard jars with nitrogen-free nutrient solution. At harvest, nodule occupancy by each strain was determined by a fluorescent antibody technique. The term ‘general competitive ability’ was introduced to describe the average competitive nodule occupancy of a strain in paired co-inoculation with a number of strains on soybean. The nodule occupancies by an individual strain were directly correlated with the proportions of that strain in the inoculum mixtures. USDA110 showed higher nodulation competitiveness than the other strains on three of the five cultivars. The Thai strain THA6 appeared to be more competitive than USDA110 on cultivar SJ5. Thus, nodulation competitiveness of the B. japonicum strains was affected by the cultivars of soybean used. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
6.
The analysis of nod genes and 16S rRNA gene regions, Nod factors, and nodulation abilities of Brady rhizobium strains isolated from tropical Thai Vigna species is reported. A total of 55 Bradyrhizobium strains isolated from two cultivated and six wild Vigna species growing in central and northern Thailand were evaluated. Thai Vigna spp. Bradyrhizobium strains showed higher levels of nod gene RFLP diversity compared with Thai soybean Brady rhizobium strains or temperate strains of Bradyrhizobium japonicum and Bradyrhizobium elkanii. Analysis of the 16S rRNA gene region using selected strains also suggests a high genetic diversity of the Thai Vigna-Bradyrhizobium association. Based on thin-layer chromatography analysis, Nod factors produced by tropical Thai Vigna spp. Brady rhizobium strains are more diverse than temperate Japanese and US strains of B. japonicum and B. elkanii. Thai Vigna spp. Bradyrhizobium strains showed variation in nodulation ability and affinity, estimated by the number of normal nodules versus green nodules in an inoculation study. There are some Bradyrhizobium-host combinations that could not form any nodules, suggesting that some genetic differentiation has evolved in their host range. However, most of the Thai Vigna spp. Bradyrhizobium strains formed nodules on the cultigens soybean (Glycine max), mungbean (Vigna radiata), azuki bean (Vigna angularis), and cowpea (Vigna unguiculata). This is the first study on Bradyrhizobium strains associated with a range of cultivated and wild Vigna and reveals that these Bradyrhizobium strains are diverse and may provide novel sources of useful variation for the improvement of symbiotic systems.  相似文献   
7.
Strain-specific antisera were produced against six Bradyrhizobium japonicum strains using two immunization procedures. These specific antisera were used for detection of bradyrhizobia in preserved soybean nodules. Antisera specific for two of these strains were either conjugated with a fluorescent dye or used with a fluorescent secondary antibody for identification of bradyrhizobia in soybean nodules that were preserved in four different storage conditions. Results show that soybean nodules dried in the oven, stored under room temperature, or at –20 °C are as suitable as fresh nodules for strain identification using fluorescent antisera.  相似文献   
8.
Investigation of N2-fixing cyanobacteria from Thai soil was carried out at 2-month intervals between July 1997 and November 1999 to determine the population number, population dynamics and favourable habitats. Sites were selected in three parts of Thailand; North, Central and Northeast. In each part, various soil ecosystems were used as sampling sites; at highest elevation as on the top of the mountain, in the middle and at the foot of the mountain, as well as in flat areas of agricultural practice and uncultivated areas. Generally, a high population of N2-fixing cyanobacteria was found in agricultural areas where rice cultivation was practised, rather than in other sites. The population dynamics in the mountain and uncultivated areas were less fluctuating than in agricultural areas. The population densities in agricultural areas increased in the rainy season and decreased during the dry season. Other environmental factors such as temperature, moisture and pH also affected the population densities in different habitats. Cyanobacterial diversity was notably influenced by the type of ecosystem in both dry and rainy seasons. The cultivation area containing rice in rotation with other crops contained the most genetically diverse range of species.  相似文献   
9.
The lateral transfer of symbiotic genes converting a predisposed soil bacteria into a legume symbiont has occurred repeatedly and independently during the evolution of rhizobia. We experimented the transfer of a symbiotic plasmid between Bradyrhizobium strains. The originality of the DOA9 donor is that it harbours a symbiotic mega-plasmid (pDOA9) containing nod, nif and T3SS genes while the ORS278 recipient has the unique property of inducing nodules on some Aeschynomene species in the absence of Nod factors (NFs). We observed that the chimeric strain ORS278-pDOA9* lost its ability to develop a functional symbiosis with Aeschynomene. indica and Aeschynomene evenia. The mutation of rhcN and nodB led to partial restoration of nodule efficiency, indicating that T3SS effectors and NFs block the establishment of the NF-independent symbiosis. Conversely, ORS278-pDOA9* strain acquired the ability to form nodules on Crotalaria juncea and Macroptillium artropurpureum but not on NF-dependent Aeschynomene (A. afraspera and A. americana), suggesting that the ORS278 strain also harbours incompatible factors that block the interaction with these species. These data indicate that the symbiotic properties of a chimeric rhizobia cannot be anticipated due to new combination of symbiotic and non-symbiotic determinants that may interfere during the interaction with the host plant.  相似文献   
10.
The diversity of bacteria nodulating Aeschynomene americana L. in Thailand was determined from phenotypic characteristics and multilocus sequence analysis of the 16S rRNA gene and 3 housekeeping genes (dnaK, recA, and glnB). The isolated strains were nonphotosynthetic bacteria and were assigned to the genus Bradyrhizobium, in which B. yuanmingense was the dominant species. Some of the other species, including B. japonicum, B. liaoningense, and B. canariense, were minor species. These isolated strains were divided into 2 groups-nod-containing and divergent nod-containing strains-based on Southern blot hybridization and PCR amplification of nodABC genes. The divergent nod genes could not be PCR amplified and failed to hybridize nod gene probes designed from B. japonicum USDA110, but hybridized to probes from other bradyrhizobial strains under low-stringency conditions. The grouping based on sequence similarity of nod genes was well correlated with the grouping based on that of nifH gene, in which the nod-containing and divergent nod-containing strains were obviously distinguished. The divergent nod-containing strains and photosynthetic bradyrhizobia shared close nifH sequence similarity and an ability to fix nitrogen in the free-living state. Surprisingly, the strains isolated from A. americana could nodulate Aeschynomene plants that belong to different cross-inoculation (CI) groups, including A. afraspera and A. indica. This is the first discovery of bradyrhizobia (nonphotosynthetic and nod-containing strain) originating from CI group 1 nodulating roots of A. indica (CI group 3). An infection process used to establish symbiosis on Aeschynomene different from the classical one is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号