首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   7篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   7篇
  2014年   7篇
  2013年   3篇
  2012年   7篇
  2011年   13篇
  2010年   8篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   6篇
  2005年   9篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  1996年   2篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1932年   1篇
排序方式: 共有104条查询结果,搜索用时 31 毫秒
1.
Neurochemical and pharmacological evidence has been obtained that noradrenergic varicosities (in mouse and rat vas deferens) and cholinergic varicosities (in the Auerbach's plexus) contain heterogenous alpha2-adrenoceptors through which the release of [3H]noradrenaline and [3H]acetylcholine can be modulated. The quantitative data also support the hypothesis that different noradrenaline and xylazine sensitive alpha2-adrenoceptors are present prejunctionally in the vas deferens and Auerbach's plexus preparations. Prazosin, although it has a presynaptic inhibitory effect on alpha2-adrenoceptors of noradrenergic axon terminals, has no effect on cholinergic axon terminals. These data suggest that there are two different types of alpha2-adrenoceptors at the presynaptic axon terminals.Special Issue Dedicated to Dr. Abel Lajtha  相似文献   
2.
Mercury (Hg) exposure remains a major public health concern due to its widespread distribution in the environment. Organic mercurials, such as MeHg, have been extensively investigated especially because of their congenital effects. In this context, studies on the molecular mechanism of MeHg-induced neurotoxicity are pivotal to the understanding of its toxic effects and the development of preventive measures. Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and acetylation are essential for the proper function of proteins and play important roles in the regulation of cellular homeostasis. The rapid and transient nature of many PTMs allows efficient signal transduction in response to stress. This review summarizes the current knowledge of PTMs in MeHg-induced neurotoxicity, including the most commonly PTMs, as well as PTMs induced by oxidative stress and PTMs of antioxidant proteins. Though PTMs represent an important molecular mechanism for maintaining cellular homeostasis and are involved in the neurotoxic effects of MeHg, we are far from understanding the complete picture on their role, and further research is warranted to increase our knowledge of PTMs in MeHg-induced neurotoxicity.  相似文献   
3.
Molecular hydrogen can be generated renewably by water splitting with an “artificial‐leaf device”, which essentially comprises two electrocatalyst electrodes immersed in water and powered by photovoltaics. Ideally, this device should operate efficiently and be fabricated with cost‐efficient means using earth‐abundant materials. Here, a lightweight electrocatalyst electrode, comprising large surface‐area NiCo2O4 nanorods that are firmly anchored onto a carbon–paper current collector via a dense network of nitrogen‐doped carbon nanotubes is presented. This electrocatalyst electrode is bifunctional in that it can efficiently operate as both anode and cathode in the same alkaline solution, as quantified by a delivered current density of 10 mA cm?2 at an overpotential of 400 mV for each of the oxygen and hydrogen evolution reactions. By driving two such identical electrodes with a solution‐processed thin‐film perovskite photovoltaic assembly, a wired artificial‐leaf device is obtained that features a Faradaic H2 evolution efficiency of 100%, and a solar‐to‐hydrogen conversion efficiency of 6.2%. A detailed cost analysis is presented, which implies that the material‐payback time of this device is of the order of 100 days.  相似文献   
4.
Tissue transglutaminase (TG2) can modify proteins by transamidation or deamidation of specific glutamine residues. TG2 has a major role in the pathogenesis of celiac disease as it is both the target of disease-specific autoantibodies and generates deamidated gliadin peptides that are recognized by CD4(+), DQ2-restricted T cells from the celiac lesions. Capillary electrophoresis with fluorescence-labeled gliadin peptides was used to separate and quantify deamidated and transamidated products. In a competition assay, the affinity of TG2 to a set of overlapping gamma-gliadin peptides was measured and compared with their recognition by celiac lesion T cells. Peptides differed considerably in their competition efficiency. Those peptides recognized by intestinal T cell lines showed marked competition indicating them as excellent substrates for TG2. The enzyme fine specificity of TG2 was characterized by synthetic peptide libraries and mass spectrometry. Residues in positions -1, +1, +2, and +3 relative to the targeted glutamine residue influenced the enzyme activity, and proline in position +2 had a particularly positive effect. The characterized sequence specificity of TG2 explained the variation between peptides as TG2 substrates indicating that the enzyme is involved in the selection of gluten T cell epitopes. The enzyme is mainly localized extracellularly in the small intestine where primary amines as substrates for the competing transamidation reaction are present. The deamidation could possibly take place in this compartment as an excess of primary amines did not completely inhibit deamidation of gluten peptides at pH 7.3. However, lowering of the pH decreased the reaction rate of the TG2-catalyzed transamidation, whereas the rate of the deamidation reaction was considerably increased. This suggests that the deamidation of gluten peptides by TG2 more likely takes place in slightly acidic environments.  相似文献   
5.
Certain HLA-DQ alleles are known to contribute to predisposition to coeliac disease (CD). The existence of additional independent risk-modifying loci in the HLA complex is still being debated. The DR3-DQ2 haplotype has been studied most, but the evidence is conflicting. The discrepancies may stem from the absence of such an effect, insufficient statistical power to detect an effect (i.e. small studies) and/or incomplete control of linkage disequilibrium (LD) to the neighbouring DQ-loci, known to elicit a strong effect. In the present study, we aimed to undertake a statistically high-powered family-based analysis, fully controlling effects of LD between the major DQ-risk haplotypes and neighbouring candidate loci. We investigated five markers on DR3-DQ2, DR5-DQ7 and DR7-DQ2 haplotypes in 327 Norwegian and Swedish families. Our primary finding was that TNF-308A (TNF2) was significantly associated on the DR3-DQ2 haplotype [stratum specific odds ratio (OR)=2.40 (1.25–4.48), Pc=0.009, where Pc=Pn and n=number of tests performed]. Furthermore, we confirmed earlier indications that LD between TNF2 and DQA1*05-DQB1*02 on the DR3 haplotype is more strongly maintained in family-based cases than family-based controls. In conclusion, we confirmed in this study, the largest of its kind, that additional CD risk factors independent of DQ2 alleles do exist on the DR3 haplotype.  相似文献   
6.
Transforming growth factor beta (TGF-beta) causes growth arrest in epithelial cells and proliferation and morphological transformation in fibroblasts. Despite the ability of TGF-beta to induce various cellular phenotypes, few discernible differences in TGF-beta signaling between cell types have been reported, with the only well-characterized pathway (the Smad cascade) seemingly under identical control. We determined that TGF-beta receptor signaling activates the STE20 homolog PAK2 in mammalian cells. PAK2 activation occurs in fibroblast but not epithelial cell cultures and is independent of Smad2 and/or Smad3. Furthermore, we show that TGF-beta-stimulated PAK2 activity is regulated by Rac1 and Cdc42 and dominant negative PAK2 or morpholino antisense oligonucleotides to PAK2 prevent the morphological alteration observed following TGF-beta addition. Thus, PAK2 represents a novel Smad-independent pathway that differentiates TGF-beta signaling in fibroblast (growth-stimulated) and epithelial cell (growth-inhibited) cultures.  相似文献   
7.
A hallmark of the gluten-driven enteropathy celiac disease is autoantibody production towards the enzyme transglutaminase 2 (TG2) that catalyzes the formation of covalent protein-protein cross-links. Activation of TG2-specific B cells likely involves gluten-specific CD4 T cells as production of the antibodies is dependent on disease-associated HLA-DQ allotypes and dietary intake of gluten. IgA plasma cells producing TG2 antibodies with few mutations are abundant in the celiac gut lesion. These plasma cells and serum antibodies to TG2 drop rapidly after initiation of a gluten-free diet, suggestive of extrafollicular responses or germinal center reactions of short duration. High antigen avidity is known to promote such responses, and is also important for breakage of self-tolerance. We here inquired whether TG2 avidity could be a feature relevant to celiac disease. Using recombinant enzyme we show by dynamic light scattering and gel electrophoresis that TG2 efficiently utilizes itself as a substrate due to conformation-dependent homotypic association, which involves the C-terminal domains of the enzyme. This leads to the formation of covalently linked TG2 multimers. The presence of exogenous substrate such as gluten peptide does not inhibit TG2 self-cross-linking, but rather results in formation of TG2-TG2-gluten complexes. The celiac disease autoantibody epitopes, clustered in the N-terminal part of TG2, are conserved in the TG2-multimers as determined by mass spectrometry and immunoprecipitation analysis. TG2 multimers are superior to TG2 monomer in activating A20 B cells transduced with TG2-specific B-cell receptor, and uptake of TG2-TG2-gluten multimers leads to efficient activation of gluten-specific T cells. Efficient catalytic self-multimerization of TG2 and generation of multivalent TG2 antigen decorated with gluten peptides suggest a mechanism by which self-reactive B cells are activated to give abundant numbers of plasma cells in celiac disease. Importantly, high avidity of the antigen could explain why TG2-specific plasma cells show signs of an extrafollicular generation pathway.  相似文献   
8.
9.
BACKGROUND: vascular endothelial cell activation and dysfunction are observed in patients with severe heart failure and may contribute to systemic manifestations of this syndrome. It remains unknown whether inflammatory activation of these cells occurs in these patients because of increased circulating proinflammatory mediators. Aim: to determine whether the serum from patients with heart failure possesses a net proinflammatory bioactivity to active proinflammatory pathways in cultured endothelial cells. METHODS: serum was obtained from stable patients with end-stage heart failure undergoing elective cardiac transplantation (Tx) and severely decompensated patients with heart failure requiring emergency left ventricular assist device (LVAD) implantation. Net proinflammatory bioactivity of serum was investigated by monitoring IkappaBalpha degradation and E-selectin expression in cultured human pulmonary artery endothelial cells (HPAEC) following incubation with serum samples. Serum cytokine concentrations were measured by ELISA and neutralizing antibodies were used to determine the role of specific factors in the observed bioactivity. RESULT: serum from both patient groups induced HPAEC IkappaBalpha degradation. Low basal HPAEC E-selectin expression significantly increased following treatment with Tx but not LVAD serum. Serum tumor necrosis factor-alpha (TNF-alpha) and IL-10 concentrations were higher in patients with LVAD than those with Tx, and soluble TNF-alpha receptor expression was high in both groups. Neither TNF-alpha nor IL-10 blocking experiments altered either bioassay result. CONCLUSION: activation of a specific profile of pro- and anti-inflammatory mediators is associated with heart failure resulting in HPAEC nuclear factor (NF)-kappaB activation. However, E-selectin expression is further regulated by unidentified factors. TNF-alpha is upregulated but appears to play no part in NFkappaB activation in these patients. These findings could have important therapeutic implications.  相似文献   
10.
The prevalence of ischemic heart disease is lower in premenopausal females than in males of corresponding age. This should be related to gender differences in coronary functions. We tested whether biomechanical differences exist between intramural coronary resistance arteries of male and female rats. Intramural branches of the left anterior descending coronary artery (uniformly approximately 200microm in diameter) were isolated, cannulated and studied by microarteriography. Intraluminal pressure was increased from 2 to 90mmHg in steps and steady-state diameters were measured. Measurements were repeated in the presence of vasoconstrictor U46619 (10(-6)M) and the endothelial coronary vasodilator bradykinin (BK) (10(-6)M). Finally, passive diameters were recorded in calcium-free saline. A similar inner radius and a higher wall thickness (41.5+/-2.9microm vs. 31.4+/-2.7microm at 50mmHg in the passive condition, p<0.05) resulted in lower tangential wall stresses in male rats (18.9+/-1.9kPa vs. 24.9+/-2.5kPa at 50mmHg, p<0.05). Isobaric elastic modulus of vessels from male animals was significantly smaller at higher pressures. Vasoconstrictor response was significantly stronger in male than in female animals. Endothelial relaxations induced by BK were not different. This is the first demonstration that biomechanical characteristics of intramural coronary resistance arteries of a mammalian species are different in the male and female sexes. Higher wall thickness and higher vascular contractility in males are associated with similar endothelial function and larger high-pressure elasticity compared to females. These gender differences in biomechanics of coronary resistance arteries of rats may contribute to our better understanding the characteristic physiological and pathological differences in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号