首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   31篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   15篇
  2020年   11篇
  2019年   12篇
  2018年   4篇
  2017年   7篇
  2016年   9篇
  2015年   13篇
  2014年   25篇
  2013年   32篇
  2012年   34篇
  2011年   35篇
  2010年   12篇
  2009年   12篇
  2008年   19篇
  2007年   33篇
  2006年   13篇
  2005年   16篇
  2004年   13篇
  2003年   12篇
  2002年   15篇
  2001年   9篇
  2000年   13篇
  1999年   8篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   8篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1970年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有413条查询结果,搜索用时 15 毫秒
1.
Two fragments of pancreatic ribonuclease A, a truncated version of S-peptide (residues 1-15) and S-protein (residues 21-124), combine to give a catalytically active complex designated ribonuclease S. We have substituted the wild-type residue Met-13 with six other hydrophobic residues ranging in size from alanine to phenylalanine and have determined the thermodynamic parameters associated with binding of these analogues to S-protein by titration calorimetry in the temperature range 5-25 degrees C. The heat capacity change (delta Cp) associated with binding was obtained from a global analysis of the temperature dependences of the free energies and enthalpies of binding. The delta Cp's were not correlated in any simple fashion with the nonpolar surface area (delta Anp) buried upon binding.  相似文献   
2.
Regulation of biological processes by proteins often involves the formation of transient, multimeric complexes whose characterization is mechanistically important but challenging. The bacterial toxin CcdB binds and poisons DNA Gyrase. The corresponding antitoxin CcdA extracts CcdB from its complex with Gyrase through the formation of a transient ternary complex, thus rejuvenating Gyrase. We describe a high throughput methodology called Ter-Seq to stabilize probable ternary complexes and measure associated kinetics using the CcdA-CcdB-GyrA14 ternary complex as a model system. The method involves screening a yeast surface display (YSD) saturation mutagenesis library of one partner (CcdB) for mutants that show enhanced ternary complex formation. We also isolated CcdB mutants that were either resistant or sensitive to rejuvenation, and used surface plasmon resonance (SPR) with purified proteins to validate the kinetics measured using the surface display. Positions, where CcdB mutations lead to slower rejuvenation rates, are largely involved in CcdA-binding, though there were several notable exceptions suggesting allostery. Mutations at these positions reduce the affinity towards CcdA, thereby slowing down the rejuvenation process. Mutations at GyrA14-interacting positions significantly enhanced rejuvenation rates, either due to reduced affinity or complete loss of CcdB binding to GyrA14. We examined the effect of different parameters (CcdA affinity, GyrA14 affinity, surface accessibilities, evolutionary conservation) on the rate of rejuvenation. Finally, we further validated the Ter-Seq results by monitoring the kinetics of ternary complex formation for individual CcdB mutants in solution by fluorescence resonance energy transfer (FRET) studies.  相似文献   
3.
Two model peptides rich in boron and prepared by Merrifield syntheses, dansyl.(nido-CB)2, (1) and dansyl.(nido-CB)10.Lys.Ac (2), where nido-CB represents the alpha-amino acid [nido-7-CH3-8-(CH2)3CH-(NH2)COOH-7,8-C2B9H10]-, were conjugated with the anti-CEA mAb T84.66 using peptide active ester reagents. The dansyl groups provided a means of fluorimetric analysis of mAb conjugates which was augmented by conventional amino acid analyses for nido-CB. The conjugate of 1 contained an average of 63 B atoms per mAb molecule. The mAb conjugate of 2 was chromatographically separated into a strongly fluorescent high molecular weight aggregated fraction (HMW) and a less intensely fluorescent monomeric fraction. Both fractions retained immunoreactivity. The HMW species contained an average of ca. 490 B atoms/mAb molecule, as determined by amino acid analysis. Biodistribution data were collected using nude mice bearing LS174T xenografts and 125I-labeled mAb conjugates. While the lightly B-loaded dipeptide conjugate gave biodistribution results which resembled those of native T84.66 mAb, the undecapeptide conjugate displayed greatly enhanced liver uptake and decreased tumor accretion. These results suggest that as the boron-containing burden on the supporting immunoprotein is greatly increased, as in the case of the T84.66-2 conjugate, loss of circulating conjugate to liver effectively competes with the desired tumor localization. Means which might be taken to circumvent this difficulty have been described elsewhere (ref 15).  相似文献   
4.
Secondary metabolites, latex/mucilagenous secretions, polysaccharides, and proteins interfere with the extraction of high-quality, restrictable total cellular DNA from sweet potato [Ipomoea batatas (L.) Lamk.] and related species. A method for the DNA extraction is described which overcomes these problems.  相似文献   
5.
Glycosylation of proteins is important for protein stability, secretion, and localization. In this study, we have investigated the glycan synthesis pathways of 12 filamentous fungi including those of medical/agricultural/industrial importance for which genomes have been recently sequenced. We have adopted a systems biology approach to combine the results from comparative genomics techniques with high confidence information on the enzymes and fungal glycan structures, reported in the literature. From this, we have developed a composite representation of the glycan synthesis pathways in filamentous fungi (both N- and O-linked). The N-glycosylation pathway in the cytoplasm and endoplasmic reticulum was found to be highly conserved evolutionarily across all the filamentous fungi considered in the study. In the final stages of N-glycan synthesis in the Golgi, filamentous fungi follow the high mannose pathway as in Saccharomyces cerevisiae, but the level of glycan mannosylation is reduced. Highly specialized N-glycan structures with galactofuranose residues, phosphodiesters, and other insufficiently trimmed structures have also been identified in the filamentous fungi. O-Linked glycosylation in filamentous fungi was seen to be highly conserved with many mannosyltransferases that are similar to those in S. cerevisiae. However, highly variable and diverse O-linked glycans also exist. We have developed a web resource for presenting the compiled data with user-friendly query options, which can be accessed at www.fungalglycans.org. This resource can assist attempts to remodel glycosylation of recombinant proteins expressed in filamentous fungal hosts.  相似文献   
6.
We have identified T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium tumefaciens (rat mutants). These mutants are highly recalcitrant to the induction of both crown gall tumors and phosphinothricin-resistant calli. The results of transient GUS (β-glucuronidase) assays suggest that some of these mutants are blocked at an early step in the Agrobacterium-mediated transformation process, whereas others are blocked at a step subsequent to translocation of T-DNA into the nucleus. Attachment of Agrobacterium to roots of the mutants rat1 and rat3 was decreased under various incubation conditions. In most mutants, the transformation-deficient phenotype co-segregated with the kanamycin resistance encoded by the mutagenizing T-DNA. In crosses with susceptible wild-type plants, the resistance phenotype of many of these mutants segregated either as a semi-dominant or dominant trait. Received: 26 October 1998 / Accepted: 8 January 1999  相似文献   
7.
Summary Virus-induced gene silencing (VIGS) is an extremely powerful tool for plant functional genomics. We used Tobacco rattle virus (TRV)-derived VIGS vectors expressed from binary vectors within Agrobacterium to induce RNA silencing in plants. Leaf infiltration is the most common method of agroinoculation used for VIGS but this method has limitations as it is laborious for large-scale screening and some plants are difficult to infiltrate. Here we have developed a novel and simple method of agroinoculation, called 'agrodrench', where soil adjacent to the plant root is drenched with an Agrobacterium suspension carrying the TRV-derived VIGS vectors. By agrodrench we successfully silenced the expression of phytoene desaturase (PDS), a 20S proteasome subunit (PB7) or Mg-protoporphyrin chelatase (Chl H) encoding genes in Nicotiana benthamiana and in economically important crops such as tomato, pepper, tobacco, potato, and Petunia, all belonging to the Solanaceae family. An important aspect of agrodrench is that it can be used for VIGS in very young seedlings, something not possible by the leaf infiltration method, which usually requires multiple fully expanded leaves for infiltration. We also demonstrated that VIGS functioned to silence target genes in plant roots. The agrodrench method of agroinoculation was more efficient than the leaf infiltration method for VIGS in roots. Agrodrench will facilitate rapid large-scale functional analysis of cDNA libraries and can also be applied to plants that are not currently amenable to VIGS technology by conventional inoculation methods.  相似文献   
8.
9.
Biomechanics and Modeling in Mechanobiology - Wrinkling is a ubiquitous surface phenomenon in many biological tissues and is believed to play an important role in arterial health. As arteries are...  相似文献   
10.
Ribosomes play an integral part in plant growth, development, and defence responses. We report here the role of ribosomal protein large (RPL) subunit QM/RPL10 in nonhost disease resistance. The RPL10-silenced Nicotiana benthamiana plants showed compromised disease resistance against nonhost pathogen Pseudomonas syringae pv. tomato T1. The RNA-sequencing analysis revealed that many genes involved in defence and protein translation mechanisms were differentially affected due to silencing of NbRPL10. Arabidopsis AtRPL10 RNAi and rpl10 mutant lines showed compromised nonhost disease resistance to P. syringae pv. tomato T1 and P. syringae pv. tabaci. Overexpression of AtRPL10A in Arabidopsis resulted in reduced susceptibility against host pathogen P. syringae pv. tomato DC3000. RPL10 interacts with the RNA recognition motif protein and ribosomal proteins RPL30, RPL23, and RPS30 in the yeast two-hybrid assay. Silencing or mutants of genes encoding these RPL10-interacting proteins in N. benthamiana or Arabidopsis, respectively, also showed compromised disease resistance to nonhost pathogens. These results suggest that QM/RPL10 positively regulates the defence and translation-associated genes during nonhost pathogen infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号