首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   18篇
  188篇
  2023年   1篇
  2021年   5篇
  2020年   4篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   14篇
  2014年   2篇
  2013年   10篇
  2012年   9篇
  2011年   13篇
  2010年   11篇
  2009年   3篇
  2008年   11篇
  2007年   2篇
  2006年   7篇
  2005年   7篇
  2004年   4篇
  2003年   7篇
  2002年   8篇
  2001年   2篇
  2000年   5篇
  1999年   7篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1975年   1篇
  1972年   4篇
  1971年   2篇
  1970年   1篇
  1966年   1篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
1.
Abstract

The interaction of poly-N6-methyladenylic acid (poly(m6A)) with poly-5-bromouridylic acid (poly(BU)) was studied by the mixing curve method. A 1 m6A: 2 BU stoichiometry was clearly indicated over a wide range of ionic strengths at neutral pH, while the binding of poly(m6A) to poly(U) is known to occur with 1 m6A:1 U. Digestion by nuclease S1 confirmed this stoichiometry, indicating the absence of single strands in a 1:2 mixture. Heating profile analysis and hydroxyapatite column chromatography provided further confirmation of this finding. To determine whether 1:2 stoichiometry holds in a monomer-polymer system, the interaction of N6-methyl-9-methyladenine (m6m9A), a corresponding monomer of poly(m6A), with poly(BU) was investigated.

Equilibrium dialysis experiments showed the stoichiometry of the interaction to be 1 m6A: 2 BU. Thus, we would describe some structural studies of the above complexes using c.d. and i. r. spectroscopy. Poly (m6A)·2poly(BU) and m6m9A·2poly(BU) are helical and analogous to each other in structure, and the bases in the complexes are all bound by hydrogen-bonding. N6-(Δ2-isopentenyl)- and N6-allyl-9-methyladenine were also found to form complexes with poly(BU), giving similar c.d. spectra with that of m6m9A·2poly(BU). The melting experiments indicated the Tms to be substantially decreased, compared to the parent unmodified complexes, even though the Tm dependence of the polymer complex on salt concentration conforms to the typical triple strand. In the following, the biological significance of this novel pairing will be discussed.  相似文献   
2.
3.
cDNA complementary to hamster mRNA encoding the CAD protein, a multifunctional protein which carries the first three enzymes of pyrimidine biosynthesis, was constructed. The longest of these recombinants (pCAD142) covers 82% of the 7.9-kilobase mRNA. Portions of the cDNA were excised and replaced by a lac promoter-operator-initiation codon segment. The resultant plasmids were transfected into an Escherichia coli mutant defective in aspartate transcarbamylase, the second enzyme of the pathway. Complementation of the bacterial defect was observed with as little as 2.2 kilobases of cDNA sequence, corresponding to the 3' region of the mRNA. DNA sequencing in this region of the hamster cDNA reveals stretches which are highly homologous to the E. coli gene for the catalytic subunit of aspartate transcarbamylase; other stretches show no homology. The highly conserved regions probably reflect areas of protein structure critical to catalysis, while the nonconserved regions may reflect differences between the quaternary structures of E. coli and mammalian aspartate transcarbamylases, one such difference being that the bacterial enzyme in its native form is allosterically regulated and the mammalian enzyme is not.  相似文献   
4.
Summary A mathematical model for the dispersal of an animal population is presented for a system in which animals are initially released in the central region of a uniform field and migrate randomly, exerting mutually repulsive influences (population pressure) until they eventually become sedentary. The effect of the population pressure, which acts to enhance the dispersal of animals as their density becomes high, is modeled in terms of a nonlinear-diffusion equation. From this model, the density distribution of animals is obtained as a function of time and the initial number of released animals. The analysis of this function shows that the population ultimately reaches a nonzero stationary distribution which is confined to a finite region if both the sedentary effect and the population pressure are present. Our results are in good agreement with the experimental data on ant lions reported by Morisita, and we can also interpret some general features known for the spatial distribution of dispersing insects.  相似文献   
5.
What eel larvae feed on in the surface layer of the ocean has remained mysterious. Gut contents and bulk nitrogen stable isotope studies suggested that these unusual larvae, called leptocephali, feed at a low level in the oceanic food web, whereas other types of evidence have suggested that small zooplankton are eaten. In this study, we determined the nitrogen isotopic composition of amino acids of both natural larvae and laboratory-reared larvae of the Japanese eel to estimate the trophic position (TP) of leptocephali. We observed a mean TP of 2.4 for natural leptocephali, which is consistent with feeding on particulate organic matter (POM) such as marine snow and discarded appendicularian houses containing bacteria, protozoans and other biological materials. The nitrogen isotope enrichment values of the reared larvae confirm that the primary food source of natural larvae is consistent only with POM. This shows that leptocephali feed on readily available particulate material originating from various sources closely linked to ocean primary production and that leptocephali are a previously unrecognized part of oceanic POM cycling.  相似文献   
6.
Human nucleotide oligomerization domain-like receptor family apoptosis inhibitory protein (NAIP) prevents apoptosis by inhibiting caspase-3, -7, and -9. Four functional Naip exist in the murine genome, each of which is equally similar to human NAIP. Among them, Naip5 induces pyroptosis by promoting caspase-1 activation in response to Legionella pneumophila infection in macrophages. However, the contribution of human NAIP to this response is unclear. To investigate the role of human NAIP in macrophage survival, we stably expressed human NAIP in RAW264.7 macrophages. Human NAIP inhibited camptothecin-induced apoptosis in macrophages; however, it promoted cytotoxicity in L. pneumophila-infected cells. This cytotoxicity was associated with caspase-1. In addition, human NAIP restricted the intracellular growth of L. pneumophila. L. pneumophila flagellin was required for cytotoxicity, caspase-1 activation, and restriction of intracellular bacterial growth. Expression of murine Naip5 produced comparable results. These data indicate that human NAIP regulates the host response to L. pneumophila infection in a manner similar to that of murine Naip5 and that human NAIP and murine Naip5 regulate cell survival by inhibiting apoptosis or by promoting pyroptosis in response to specific cellular signals.  相似文献   
7.
Modeling the Expansion of an Introduced Tree Disease   总被引:10,自引:0,他引:10  
Pine wilt disease is caused by the introduced pinewood nematode, Bursaphelenchus xylophilus, for which the vector is the pine sawyer beetle, Monochamus alternatus. Native Japanese pines, black pine (Pinus thunbergii) and red pine (P. densiflora), are extremely sensitive to the nematode's infection, and the parasite has been expanding nationwide in the last few decades, despite intensive control efforts. To understand the parasite's range expansion in Japan, we modeled the dynamics of the pines and the beetle that disperses the nematode, using an integro-difference equation in a one-dimensional space. Based on field data collected in Japan, we investigated the dependence of the parasite's rate of range expansion on the eradication rate of the beetle, the initial pine density, and the beetle dispersal ability. Our model predicts several results. (1) The Allee Effect operates on beetle reproduction, and consequently the parasite cannot invade a pine stand, once the beetle density decreases below a threshold. (2) The distribution of the dispersal distance of the beetles critically affects the expansion rate of the disease. As the fraction of the beetles that travel over long distance increases from zero, the range expansion accelerates sharply. (3) However, too frequent long-range dispersal results in a failure of the parasite invasion due to the Allee Effect, suggesting the importance of correctly assessing the beetle's mobility to predict the speed of range expansion of the parasite. (4) As the eradication rate is increased, the range expansion speed decreases gradually at first and suddenly drops to zero at a specific value of the eradication rate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
A recombinant clone, pM52, containing cDNA for maize phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.31) was isolated from a maize leaf cDNA library constructed using an expression vector in Escherichia coli. The screening of the clone was conveniently performed through its ability to complement the phenotype (glutamate requirement) of PEPCase-negative mutant of E. coli. The enzyme encoded by this clone was identical with the major PEPCase in maize, a key enzyme in the C4-pathway, as judged from its allosteric properties and immunological reactivity. The cloned cDNA (3093 nucleotides in length) contained an open reading frame of 2805 nucleotides, the 3'-untranslated region of 222 nucleotides and the poly(dA) tract of 64 nucleotides. The deduced amino acid sequence (935 residues) of the enzyme showed higher homology with that of an enterobacterium, E. coli (43%) than that of a cyanobacterium (blue-green alga), Anacystis nidulans (33%).  相似文献   
9.
Long-chain and/or branched-chain polyamines are unique polycations found in thermophiles. Cytoplasmic polyamines were analyzed for cells cultivated at various growth temperatures in the hyperthermophilic archaeon Thermococcus kodakarensis. Spermidine [34] and N4-aminopropylspermine [3(3)43] were identified as major polyamines at 60°C, and the amounts of N4-aminopropylspermine [3(3)43] increased as the growth temperature rose. To identify genes involved in polyamine biosynthesis, a gene disruption study was performed. The open reading frames (ORFs) TK0240, TK0474, and TK0882, annotated as agmatine ureohydrolase genes, were disrupted. Only the TK0882 gene disruptant showed a growth defect at 85°C and 93°C, and the growth was partially retrieved by the addition of spermidine. In the TK0882 gene disruptant, agmatine and N1-aminopropylagmatine accumulated in the cytoplasm. Recombinant TK0882 was purified to homogeneity, and its ureohydrolase characteristics were examined. It possessed a 43-fold-higher kcat/Km value for N1-aminopropylagmatine than for agmatine, suggesting that TK0882 functions mainly as N1-aminopropylagmatine ureohydrolase to produce spermidine. TK0147, annotated as spermidine/spermine synthase, was also studied. The TK0147 gene disruptant showed a remarkable growth defect at 85°C and 93°C. Moreover, large amounts of agmatine but smaller amounts of putrescine accumulated in the disruptant. Purified recombinant TK0147 possessed a 78-fold-higher kcat/Km value for agmatine than for putrescine, suggesting that TK0147 functions primarily as an aminopropyl transferase to produce N1-aminopropylagmatine. In T. kodakarensis, spermidine is produced mainly from agmatine via N1-aminopropylagmatine. Furthermore, spermine and N4-aminopropylspermine were detected in the TK0147 disruptant, indicating that TK0147 does not function to produce spermine and long-chain polyamines.Polyamines are positively charged aliphatic compounds. Putrescine [4], spermidine [34], and spermine [343] are common polyamines observed in various living organisms, from viruses to humans (16). Polyamines, which play important roles in cell proliferation and cell differentiation (19, 34), are thought to contribute to adaptation against various stresses (9, 26). In thermophilic microorganisms, polyamines contribute to growth under high-temperature conditions. Indeed, in the thermophilic bacterium Thermus thermophilus, a mutant strain lacking the enzyme related to polyamine biosynthesis shows defective growth at high temperatures (23). Furthermore, thermophilic archaea and bacteria possess long-chain and branched-chain polyamines such as N4-aminopropylspermidine [3(3)4], N4-aminopropylspermine [3(3)43], and N4-bis(aminopropyl)spermidine [3(3)(3)4], in addition to common polyamines (11, 13, 14). N4-aminopropylspermine was detected in the cells of thermophiles, such as Saccharococcus thermophilus, thermophilic Bacillus and Geobacillus spp. (Bacillus caldolyticus, B. caldotenax, B. smithii, Geobacillus stearothermophilus, and G. thermocatenulatus), Caldicellulosiruptor spp. (C. kristjanssonii and C. owensensis) and Calditerricola spp. (C. satsumensis and C. yamamurae) (10, 12, 22), but it was not detected in archaea. These unique polyamines are thought to support the growth of thermophilic microorganisms under high-temperature conditions. An in vitro study indicated that long-chain and branched-chain polyamines effectively stabilized DNA and RNA, respectively (32).Polyamines are synthesized from amino acids such as arginine, ornithine, and methionine (26). In most eukaryotes, putrescine is synthesized directly from ornithine by ornithine decarboxylase (34). Plants and some bacteria possess additional or alternative putrescine biosynthesis pathways in which putrescine is synthesized from arginine via agmatine (18, 31, 35). In this pathway, agmatine is synthesized by arginine decarboxylase, and agmatine is converted to putrescine by agmatine ureohydrolase or a combination of agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase. Longer polyamines are then produced by the addition of the aminopropyl group from decarboxylated S-adenosylmethionine. This pathway is shown on the left in Fig. Fig.11 (pathway I). On the other hand, the thermophilic bacterium T. thermophilus possesses a unique polyamine-biosynthetic pathway (23) in which spermidine is synthesized from agmatine via N1-aminopropylagmatine by aminopropyl transferase followed by ureohydrolase, as shown on the right in Fig. Fig.11 (pathway II).Open in a separate windowFIG. 1.Predicted biosynthetic pathway of polyamines in T. kodakarensis. (A) Predicted biosynthetic pathway. Pyruvoyl-dependent arginine decarboxylase proenzyme (TK0149), arginine/agmatine ureohydrolases (TK0240/TK0474/TK0882), aminopropyl transferase (TK0147), and pyruvoyl-dependent S-adenosylmethionine decarboxylase proenzyme (TK1592) are shown based on the genome analysis. (B) Structures of unique polyamines.A sulfur-reducing hyperthermophilic archaeon, Thermococcus kodakarensis KOD1, was isolated from Kodakara Island, Kagoshima, Japan (1, 21). This archaeon grows at temperatures between 60°C and 100°C but optimally at 85°C. Under low- or high-temperature-stressed conditions, T. kodakarensis produces cold- or heat-inducible chaperones to adapt to unfavorable growth environments (4, 5, 30). The lipid composition of the membrane also changes depending on the growth shift (20). In addition to acting as such tolerance factors, polyamines have been suggested to play an important role in maintaining nucleosomes in high-temperature environments (15). A complete genome analysis of T. kodakarensis has been performed, and the pathway of polyamine biosynthesis has been predicted (Fig. (Fig.1)1) (6, 7). It has been speculated that putrescine is synthesized from arginine via agmatine by arginine decarboxylase (PdaDTk) and agmatine ureohydrolase. Long- and/or branched-chain polyamines are then produced by the addition of the aminopropyl group derived from decarboxylated S-adenosylmethionine. Previously, we revealed that PdaDTk catalyzed the first step of polyamine biosynthesis and was essential for cell growth (6). The strain DAD, which lacks the gene pdaDTk, does not grow in medium without agmatine. Archaeal cells are known to use agmatine to synthesize agmatidine, which is an agmatine-conjugated cytidine found at the anticodon wobble position of archaeal tRNAIle (17). Agmatine is important for agmatidine synthesis as well as long-chain polyamine. In the present study, we focused on the subsequent steps in polyamine biosynthesis, especially from agmatine to spermidine. T. kodakarensis possesses three agmatine ureohydrolase homologues (TK0240, TK0474, and TK0882); however, it is unclear which one is dominantly functional in T. kodakarensis cells. In a closely related genus, Pyrococcus, TK0474 and TK0882 orthologues have been identified, but the TK0240 orthologue is missing in Pyrococcus genomes. In Pyrococcus horikoshii, PH0083, which is an orthologue of TK0882, was shown to possess agmatine ureohydrolase activity (8). TK0882, hence, appears to possess agmatine ureohydrolase activity as well. It is unclear whether other agmatine ureohydrolase homologues (TK0240 and TK0474) are involved in polyamine synthesis and cell growth in T. kodakarensis. In addition to agmatine ureohydrolase, aminopropyl transferase plays a crucial role in the synthesis of polyamines. TK0147 was annotated first as spermidine synthase and shares sequence identity with aminopropyl transferase (PF0127) from Pyrococcus furiosus (3). It is therefore expected to harbor the function of aminopropyl transferase for long-chain-polyamine synthesis. Recombinant PF0127 showed broad amine acceptor specificity for agmatine, 1,3-diaminopropane (3), putrescine, cadaverine (5), sym-nor-spermidine (33), and spermidine. While maximal catalytic activity was observed with cadaverine, agmatine was most often preferred on the basis of the kcat/Km value (3), suggesting that pathway II is a dominant route for polyamine synthesis in P. furiosus. In the present study, various disruptants lacking genes for polyamine biosynthesis were constructed in order to understand the physiological roles of these enzymes in T. kodakarensis. The cell growth profiles and cytoplasmic polyamines of the wild type and the disruptants were analyzed and compared. Recombinant enzymes were also purified and characterized. The obtained results are expected to provide useful information regarding the specific roles of polyamines in thermophiles.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号