首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
An understanding of how fatigue cracks grow in bone is of importance as fatigue is thought to be the main cause of clinical stress fractures. This study presents new results on the fatigue-crack growth behavior of small surface cracks (approximately 75-1000 microm in size) in human cortical bone, and compares their growth rates with data from other published studies on the behavior of both surface cracks and many millimeter, through-thickness large cracks. Results are obtained with a cyclically loaded cantilever-beam geometry using optical microscopy to examine for crack growth after every 100-500 cycles. Based on the current and previous results, small fatigue cracks appear to become more resistant to fatigue-crack growth with crack extension, analogous to the way the fracture resistance of cortical bone increases with crack growth. Mechanistically, a theory attributing such behavior to the development of bridges in the wake of the crack with crack growth is presented. The existence of such bridges is directly confirmed using optical microscopy.  相似文献   
5.
Micromechanical models for fracture initiation that incorporate local failure criteria have been widely developed for metallic and ceramic materials; however, few such micromechanical models have been developed for the fracture of bone. In fact, although the fracture event in "hard" mineralized tissues such as bone is commonly believed to be locally strain-controlled, only recently has there been experimental evidence (using double-notched four-point bend testing) to support this widely held belief. In the present study, we seek to shed further light on the nature of the local cracking events that precede catastrophic fracture in human cortical bone, and to define their relationship to the microstructure. Specifically, numerical computations are reported that demonstrate that the stress and strain states ahead of such a notch are qualitatively similar irrespective of the deformation mechanism (pressure-insensitive plasticity vs. pressure-sensitive microcracking). Furthermore, we use the double-notched test to examine crack-microstructure interactions from a perspective of determining the salient toughening mechanisms in bone and to characterize how these may affect the anisotropy in fracture properties. Based on preliminary micromechanical models of these processes, the relative contributions of various toughening mechanisms are established. In particular, crack deflection and uncracked-ligament bridging are identified as the major mechanisms of toughening in cortical bone.  相似文献   
6.
Chemokines play a vital role in recruiting various cell types in the process of tissue repair. Radiation, a major therapeutic modality in cancer treatment, has been described to induce inflammatory response that might lead to the expression of several chemokines. In the present study, we investigated the mechanism of monocyte chemoattractant protein-1 (MCP-1) induction by radiation in meningioma cell lines and the paracrine effect on human microvascular endothelial cells (HMEC). After radiation, meningioma cell lines (IOMM Lee and SF-3061) showed an increased expression of MCP-1. In addition, irradiated meningioma cancer cell conditioned medium (CM) showed an increased ability to attract HMEC and to stimulate MCP-1-induced protein (MCPIP), VEGF and angiogenin expression in HMEC. This chemotactic activity and angiogenic stimulator effect on HMEC were almost abrogated by depleting MCP-1 from the irradiated cancer cell CM. Further, inhibition of either ERK activation/expression or NF-κB nuclear translocation hindered radiation-induced MCP-1 expression in both meningioma cell lines. Further, supplementing cancer cells with exogenous ATF-uPA (with and without radiation) activated ERK phosphorylation, nuclear translocation of the NF-κB p65 sub-unit (Rel-A), and MCP-1 expression. Downregulation of uPA and uPAR, simultaneously by transfecting the cancer cells with bi-cistronic siRNA-expressing plasmid (pU) inhibited radiation-induced ERK activation, nuclear translocation of Rel-A, NF-κB DNA binding activity, and MCP-1 expression. In addition, pU-transfected cancer cells (with or without radiation) reduced radiation-induced MCP-1 and blocked the recruitment of other cell types during the inflammatory process induced by radiation both in in vitro and in vivo conditions.  相似文献   
7.
8.
9.
The purpose of this study was to prepare and characterize nanometer-sized prodrug (nanoprodrug) of camptothecin. The camptothecin prodrug was synthesized using tetraethylene glycol spacer linked via carbonate bond to camptothecin and via ester bond to α-lipoic acid. The nanoprodrug was prepared through the spontaneous emulsification mechanism using the mixture of camptothecin prodrug and α-tocopherol which served as a structural matrix. The nanoprodrug was activated readily by porcine liver esterase and, with a much slower rate, by hydrolytic degradation. Upon longterm storage, the α-lipoic acid moiety of the camptothecin prodrug gradually oxidized without loss of structural integrity and therapeutic efficacy. Interestingly, the hydrolytic activation was negligible before the oxidation, but was significantly accelerated after the oxidation of the α-lipoic acid moiety, suggesting an oxidative stimuli-responsive activation of the prodrug. The camptothecin nanoprodrug was found to possess significant inhibitory effect on the proliferation of U87-MG glioma cells with an IC50 of 20 nM.  相似文献   
10.
Cell Biology and Toxicology - Chronic inflammation (CI) is a primary contributing factor involved in multiple diseases like cancer, stroke, diabetes, Alzheimer’s disease, allergy, asthma,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号