首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   17篇
  103篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2002年   3篇
  2000年   1篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1976年   4篇
  1975年   1篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1971年   1篇
  1970年   3篇
  1969年   2篇
  1968年   4篇
  1967年   2篇
  1966年   1篇
  1965年   2篇
  1963年   1篇
  1962年   1篇
  1935年   1篇
  1914年   1篇
排序方式: 共有103条查询结果,搜索用时 0 毫秒
1.
A ninhydrin-positive, phosphorus-negative lipid from Paracoccus denitrificans ATCC 13543 has been isolated and purified by mild alkaline methanolysis followed by silicic acid column chromatography and preparative thin-layer chromatography. The lipid was identified as an ornithine-containing lipid. The major ester-linked fatty acid was cis vaccenic acid. Major amide-linked fatty acids were 3-OH-20:1 and 3-OH-18:0. Ornithine-containing lipid was a major lipid component of P. denitrificans. Phospholipids made up about 57% and ornithine-containing lipid about 14% of the weight of the total lipid of the organism. The ratios of lipid ornithine: lipid phosphorus were 0.23, 0.65 and 0.58 in cytoplasmic membrane, outer membrane, and an NaCl extract, which is thought to represent chiefly outer membrane, respectively. Thus ornithine-containing lipid appears to be present in larger amounts in outer membrane than cytoplasmic membrane. No substantial variations in lipid ornithine levels were noted in stationary phase versus exposnential phase organisms, organisms grown in complex medium versus organisms grown in minimal medium with and without amino acid supplements, or in organisms grown in low phosphate-containing medium.Non standard abbreviations TLC thin-layer chromatography - Tris-HCl tris(hydroxymethyl)aminomethane hydrochloride - TMS trimethylsilyl - TFA triluoroacetyl - NPPN ninhydrin-positive, phosphorus-negative - ECL equivalent chain length  相似文献   
2.
Calea reticulata afforded in addition to known compounds two new sesquiterpenes. These were germacrane and eudesmane derivatives, identified as germacra-4(15),5,10(14)-trien-1-one and 6-epi-β-verbesinol coumarate, respectively.  相似文献   
3.
4.
  总被引:1,自引:9,他引:1  
The lipids of the sterol nonrequiring Mycoplasma strain S743 were found to include both ester glycerophosphatides (phosphatidylglycerol, acylphosphatidylglycerol, and diphosphatidylglycerol) and ceramide glycerophosphate compounds containing N-hydroxyacyl groups. The major phosphosphingolipid was tentatively identified as a hydroxyceramidephosphorylglycerol containing an O-acyl group. These compounds became labeled during growth in the presence of (32)P-orthophosphate, (14)C-glycerol, or (14)C-palmitate. The lipid fraction also contained free long-chain base. (14)C-palmitate was converted to labeled sphinganine. The long-chain base composition of the lipids was modified by growing the organisms in media containing different fatty acids, which were converted to bases containing two more C atoms per molecule. Ninety per cent of the long-chain base from cells grown in medium supplemented with elaidate consisted of monounsaturated C(20) base.  相似文献   
5.
Growth yields of bacteria on selected organic compounds   总被引:3,自引:4,他引:3       下载免费PDF全文
Cell yields were determined for two bacterial soil isolants grown aerobically in minimal media on a variety of synthetic organic compounds. 1-Dodecanol, benzoic acid, phenylacetic acid, phenylglyoxylic acid, and diethylene, triethylene, and tetraethylene glycols were tested. Two “biochemicals,” succinate and acetate, were also tested for comparison. Yields were calculated on the basis of grams of cells obtained per mole of substrate utilized, gram atom of carbon utilized, mole of oxygen consumed, and equivalent of “available electrons” in the substrates. This latter value appears to be nearly constant at 3 g of cells per equivalent of “available electrons.” Yields predicted on this basis for other bacteria and for yeasts on other substrates are in fair agreement with reported values.  相似文献   
6.
The initiation of translation in eukaryotes requires a suite of eIFs that include the cap-binding complex, eIF4F. eIF4F is comprised of the subunits eIF4G and eIF4E and often the helicase, eIF4A. The eIF4G subunit serves as an assembly point for other initiation factors, whereas eIF4E binds to the 7-methyl guanosine cap of mRNA. Plants have an isozyme form of eIF4F (eIFiso4F) with comparable subunits, eIFiso4E and eIFiso4G. Plant eIF4A is very loosely associated with the plant cap-binding complexes. The specificity of interaction of the individual subunits of the two complexes was previously unknown. To address this issue, mixed complexes (eIF4E-eIFiso4G or eIFiso4E-eIF4G) were expressed and purified from Escherichia coli for biochemical analysis. The activity of the mixed complexes in in vitro translation assays correlated with the large subunit of the respective correct complex. These results suggest that the eIF4G or eIFiso4G subunits influence translational efficiency more than the cap-binding subunits. The translation assays also showed varying responses of the mRNA templates to eIF4F or eIFiso4F, suggesting that some level of mRNA discrimination is possible. The dissociation constants for the correct complexes have K(D) values in the subnanomolar range, whereas the mixed complexes were found to have K(D) values in the ~10 nm range. Displacement assays showed that the correct binding partner readily displaces the incorrect binding partner in a manner consistent with the difference in K(D) values. These results show molecular specificity for the formation of plant eIF4F and eIFiso4F complexes and suggest a role in mRNA discrimination during initiation of translation.  相似文献   
7.
PGE1 and PGE2 have been reported to enhance natural expulsion of Nippostrongylus brasiliensis, a nematode parasite, from the intestine of the rat. Mucus production may also be a key element of worm rejection. Our study attempts to determine if 1) PGE1 or PGE2 alter the normal course of infection with N. brasiliensis in rats, 2) a known mucous enhancing drug, acetazolamide, can augment the rate of worm expulsion, and 3) combinations of prostaglandins and acetazolamide affect N. brasiliensis in the rat. Rats were inoculated with approximately 1,000 infective larvae of N. brasiliensis. Animals were administered, intraduodenally, one of the following: 0.2 ml 0.9% NaCl; 0.2 ml 100% ethanol; 250 micrograms PGE1/0.2 ml 100% ethanol; 250 micrograms PGE2/0.2 ml 100% ethanol; 250 micrograms acetazolamide/0.2 ml 100% ethanol; 250 micrograms PGE1 or PGE2 + 250 micrograms acetazolamide/0.2 ml 100% ethanol. These solutions were given in a single bolus on day 6 postinoculation (PI) or twice daily on days 6-9 PI. Following these treatments the number of parasite ova per gram feces per day for days 6-10 PI and numbers of worms present at necropsy on day 10 PI were determined. Treatment with prostaglandins or acetazolamide or both failed to adversely affect egg deposition by adult female worms or the number of worms in the small intestine. These results do not support the involvement of prostaglandins in the expulsion of N. brasiliensis from the host intestine.  相似文献   
8.
Bacteroides gingivalis is a newly proposed species which includes strains isolated from the mouth. Thirteen strains of B. gingivalis isolated from three geographic locations in the United States and France were examined with direct fluorescent antibody staining and analysis of total cellular fatty acids and compared with 16 strains of B. asaccharolyticus of nonoral origin by the same methods. Bacteroides gingivalis strains reacted with the B. gingivalis conjugate (fluorescein isothiocyanate labeled antibody reagent) only, while the B, asaccharolyticus strains reacted with the B. asaccharolyticus conjugate only. The B. gingivalis strains showed negative fluorescence with fluorescein isothiocyanate conjugates for other black-pigmented Bacteroides species. The specificity of the B. gingivalis conjugate was demonstrated by its failure to stain 88 strains of aerobic and anaerobic bacteria other than B. gingivalis. The fatty acid profiles of B. gingivalis and B. asaccharolyticus were readily distinguishable. The B. gingivalis profile was also distinguishable from those of other pigmenting Bacteroides species on the basis of concentration ratios among the characteristic components. These results support the species separation of B. gingivalis and B. asaccharolyticus. Further, they indicate the usefulness of cellular fatty acid profiles as an adjunct to the use of specific fluorescent antibody conjugates for identification of Bacteroides species.  相似文献   
9.
Durrett R  Foo J  Leder K  Mayberry J  Michor F 《Genetics》2011,188(2):461-477
With rare exceptions, human tumors arise from single cells that have accumulated the necessary number and types of heritable alterations. Each such cell leads to dysregulated growth and eventually the formation of a tumor. Despite their monoclonal origin, at the time of diagnosis most tumors show a striking amount of intratumor heterogeneity in all measurable phenotypes; such heterogeneity has implications for diagnosis, treatment efficacy, and the identification of drug targets. An understanding of the extent and evolution of intratumor heterogeneity is therefore of direct clinical importance. In this article, we investigate the evolutionary dynamics of heterogeneity arising during exponential expansion of a tumor cell population, in which heritable alterations confer random fitness changes to cells. We obtain analytical estimates for the extent of heterogeneity and quantify the effects of system parameters on this tumor trait. Our work contributes to a mathematical understanding of intratumor heterogeneity and is also applicable to organisms like bacteria, agricultural pests, and other microbes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号