首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1996年   2篇
  1988年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Diverse variation of reproductive barriers in three intraspecific rice crosses   总被引:19,自引:0,他引:19  
Reproductive barriers are thought to play an important role in the processes of speciation and differentiation. Asian rice cultivars, Oryza sativa, can be classified into two main types, Japonica and Indica, on the basis of several characteristics. The fertility of Japonica-Indica hybrids differs from one cross to another. Many genes involved in reproductive barriers (hybrid sterility, hybrid weakness, and gametophytic competition genes) have been reported in different Japonica-Indica crosses. To clarify the state of Japonica-Indica differentiation, all reproductive barriers causing deviation from Mendelian segregation ratios in F(2) populations were mapped and compared among three different Japonica-Indica crosses: Nipponbare/Kasalath (NK), Fl1084/Dao Ren Qiao (FD), and Fl1007/Kinandang puti (FK). Mapping of reproductive barriers was performed by regression analysis of allele frequencies of DNA markers covering the entire genome. Allele frequencies were explained by 33 reproductive barriers (15 gametophytic and 18 zygotic) in NK, 32 barriers (15 gametophytic and 17 zygotic) in FD, and 37 barriers (19 gametophytic and 18 zygotic) in FK. The number of reproductive barriers in the three crosses was similar; however, most of the barriers were mapped at different loci. Therefore, these reproductive barriers formed after Japonica-Indica differentiation. Considering the high genetic similarity within Japonica and Indica cultivars, the differences in the reproductive barriers of each cross were unexpectedly numerous. The reproductive barriers of Japonica-Indica hybrids likely evolved more rapidly than other genetic elements. One possible force responsible for such rapid evolution of the barriers may have been the domestication of rice.  相似文献   
2.
Rice has been grown in Japan for about 3000 years. Although both japonica and indica varieties have been grown in Japan, now japonica rices are grown. Japanese rice breeding has used an ecological breeding approach. While emphasis in rice breeding in the 1940's and 1950's focussed on yield in recent decades quality has been of major importance. Consumer preference and name recognition of high quality varieties, such as Koshihikari, has resulted in slow acceptance of new varieties.Rice germplasm was systematically collected throughout Japan between 1962 and 1963. Subsequent acquisition and collecting, in Japan and other countries, has resulted in 28,000 accessions being conserved in the National Genebank, based at the National institute of Agrobiological Resources (NIAR).Research on genetic diversity of rice using a range of techniques, for example esterase isozymes, has revealed clinal variation in rice radiating from the center of diversity of rice in and around southwest China. Newly found genes in traditional rice germplasm, such as genes for non-elongating mesocotyl, are now routinely identified on the rice genome. Pioneering studies on eco-genetic differentiation of species in the genus Oryza in Japan has revealed much about the complex genepool for which rice evolved.Pest and disease resistance sources, particularly to blast, bacterial blight and brown plant hopper, from many countries have been incorporated into Japanese varieties. Cold tolerance at the booting stage was found in the Indonesian variety Silewah. In the future in characterisation of rice germplasm and interaction between rice germplasm specialists and rice molecular scientists, both in Japan and internationally, will be corner stones to securing rice genetic diversity and rice improvement in the next century.  相似文献   
3.
Summary Mitochondrial (mt) plasmid-like DNA was found in most of more than 100 rice cultivars (Oryza sativa L.) by the use of 0.7% agarose gel electrophoresis (AGE). The DNA varied in molecular weight and number. By electron microscopy, small circular DNAs of different sizes could be detected in addition to the DNAs of high molecular weight, even in cultivars in which mt plasmid-like DNA was not detected by AGE. The detection of the mt plasmid-like DNAs by AGE did not depend on their presence or absence, but on their high stoichiometry. The relationship between cytoplasms with mt plasmid-like DNAs and varietal (for example, Indica rice) groups was close. The geographical distribution of cytoplasms is discussed.  相似文献   
4.
We have constructed a high-resolution rice genetic map containing 1383 DNA markers covering 1575 cM on the 12 linkage groups of rice using 186 F2 progeny from a cross between a japonica variety, Nipponbare, and an indica variety, Kasalath. Using this high-resolution molecular linkage map, we detected segregation distortion in a single wide cross of rice. The frequencies of genotypes for 1181 markers with more than 176 genotype data were plotted along this map to detect segregation distortion. Several types of distorted segregation were observed on 6 of the chromosomes. We could detect 11 major segregation distortions at ten positions on chromosomes 1, 3, 6, 8, 9, and 10. The strongest segregation distortion was at 107.2 cM on chromosome 3 and may be the gametophyte gene 2 (ga-2). The Kasalath genotype at this position was transmitted to the progeny with about a 95% probability through the pollen gamete. At least 8 out of the 11 segregation distortions detected here are new. The use of the high-resolution molecular linkage map for improving our understanding of the genetic nature and cause of these segregation distortions is discussed.  相似文献   
5.
A group of about 300 evenly distributed DNA markers from a high density RFLP linkage map of rice constructed using an F2 population derived from a japonica variety, Nipponbare, and an indica variety, Kasalath, were used to evaluate gene order and genetic distance in four other rice mapping populations. The purpose of this study was to determine the degree to which information gained from the high density linkage map could be applied to other mapping populations, particularly with regard to its utility in bridging quantitative traits and molecular and physical mapping information. The mapping populations consisted of two F2 populations derived from Dao Ren Qiao/Fl-1084 and Kinandangputi/Fl-1007, recombinant inbred lines from Asominori/IR24, and a backcross population from Sasanishiki/Habataki//Sasanishiki. All DNA markers commonly mapped in the four populations showed the same linkage groups as in the Nipponbare/Kasalath linkage map with conserved linkage order. The genetic distance between markers among the different populations did not vary to a significant level in any of the 12 chromosomes. The differences in some markers could be attributed to the size of the population used in the construction of the linkage maps. Furthermore, the conservation of linkage order found in the distal region of chromosomes 11 and 12 was also confirmed in the RFLP maps based on the four populations of rice. These suggest that any major genetic information from the Nipponbare/Kasalath map can be expected to be approximately the same in other crosses or populations. This high density RFLP linkage map, which is being utilized in constructing a physical map of rice, can be very useful in interpreting genome structure with great accuracy in other populations. Key words : linkage map, japonica, indica, gene order, genetic distance.  相似文献   
6.
A genome-wide survey of reproductive barriers in an intraspecific hybrid   总被引:6,自引:0,他引:6  
Genetic study of the reproductive barriers between related species plays an essential role in understanding the process of speciation. We developed a new method for mapping all possible factors causing deviations from expected Mendelian segregation ratios in F(2) progeny, which substantially contribute to reproductive isolation. A multiresponse nonlinear regression analysis of the allele frequencies of the markers covering an entire genome in the F(2) population was performed to estimate the map position and intensity of the reproductive barriers on each chromosome. In F(2) plants from a cross between a Japonica variety of rice, Nipponbare, and an Indica variety, Kasalath, the deviations of allele frequencies were well explained by 33 reproductive barriers. Of these, 15 reproductive barriers affected the allele transmission rate through the gametophyte and in 9 of these 15 cases, an Indica allele was transmitted at a higher frequency than a Japonica allele. The other 18 reproductive barriers altered the viability of the zygote via its genotype. Two zygotic reproductive barriers showed overdominance and 5 showed underdominance. The most pronounced reproductive barrier, mapped at 62.3 +/- 0.4 cM on chromosome 3, transmitted the Indica allele by 94% through the male gametophyte. The accuracy of the barrier position in the regression analysis was confirmed by progeny analysis. The regression analysis proved to be a powerful tool for detecting and characterizing every reproductive barrier, irrespective of whether it acted on the male or female gametophyte or the zygote.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号